#Copyright ReportLab Europe Ltd. 2000-2017 #see license.txt for license details #history https://hg.reportlab.com/hg-public/reportlab/log/tip/src/reportlab/graphics/charts/utils.py __version__='3.3.0' __doc__="Utilities used here and there." from time import mktime, gmtime, strftime from math import log10, pi, floor, sin, cos, sqrt, hypot import weakref from reportlab.graphics.shapes import transformPoint, transformPoints, inverse, Ellipse, Group, String, Path, numericXShift from reportlab.lib.utils import flatten from reportlab.pdfbase.pdfmetrics import stringWidth ### Dinu's stuff used in some line plots (likely to vansih). def mkTimeTuple(timeString): "Convert a 'dd/mm/yyyy' formatted string to a tuple for use in the time module." L = [0] * 9 dd, mm, yyyy = list(map(int, timeString.split('/'))) L[:3] = [yyyy, mm, dd] return tuple(L) def str2seconds(timeString): "Convert a number of seconds since the epoch into a date string." return mktime(mkTimeTuple(timeString)) def seconds2str(seconds): "Convert a date string into the number of seconds since the epoch." return strftime('%Y-%m-%d', gmtime(seconds)) ### Aaron's rounding function for making nice values on axes. def nextRoundNumber(x): """Return the first 'nice round number' greater than or equal to x Used in selecting apropriate tick mark intervals; we say we want an interval which places ticks at least 10 points apart, work out what that is in chart space, and ask for the nextRoundNumber(). Tries the series 1,2,5,10,20,50,100.., going up or down as needed. """ #guess to nearest order of magnitude if x in (0, 1): return x if x < 0: return -1.0 * nextRoundNumber(-x) else: lg = int(log10(x)) if lg == 0: if x < 1: base = 0.1 else: base = 1.0 elif lg < 0: base = 10.0 ** (lg - 1) else: base = 10.0 ** lg # e.g. base(153) = 100 # base will always be lower than x if base >= x: return base * 1.0 elif (base * 2) >= x: return base * 2.0 elif (base * 5) >= x: return base * 5.0 else: return base * 10.0 _intervals=(.1, .2, .25, .5) _j_max=len(_intervals)-1 def find_interval(lo,hi,I=5): 'determine tick parameters for range [lo, hi] using I intervals' if lo >= hi: if lo==hi: if lo==0: lo = -.1 hi = .1 else: lo = 0.9*lo hi = 1.1*hi else: raise ValueError("lo>hi") x=(hi - lo)/float(I) b= (x>0 and (x<1 or x>10)) and 10**floor(log10(x)) or 1 b = b while 1: a = x/b if a<=_intervals[-1]: break b = b*10 j = 0 while a>_intervals[j]: j = j + 1 while 1: ss = _intervals[j]*b n = lo/ss l = int(n)-(n<0) n = ss*l x = ss*(l+I) a = I*ss if n>0: if a>=hi: n = 0.0 x = a elif hi<0: a = -a if lo>a: n = a x = 0 if hi<=x and n<=lo: break j = j + 1 if j>_j_max: j = 0 b = b*10 return n, x, ss, lo - n + x - hi def find_good_grid(lower,upper,n=(4,5,6,7,8,9), grid=None): if grid: t = divmod(lower,grid)[0] * grid hi, z = divmod(upper,grid) if z>1e-8: hi = hi+1 hi = hi*grid else: try: n[0] except TypeError: n = range(max(1,n-2),max(n+3,2)) w = 1e308 for i in n: z=find_interval(lower,upper,i) if z[3] 3 or power < -3: format = '%+'+repr(w+7)+'.0e' else: if power >= 0: digits = int(power)+w format = '%' + repr(digits)+'.0f' else: digits = w-int(power) format = '%'+repr(digits+2)+'.'+repr(digits)+'f' if percent: format=format+'%%' T = [] n = int(float(hi-t)/grid+0.1)+1 if split: labels = [] for i in range(n): v = t+grid*i T.append(v) labels.append(format % (v+labelVOffset)) return T, labels else: for i in range(n): v = t+grid*i T.append((v, format % (v+labelVOffset))) return T def findNones(data): m = len(data) if None in data: b = 0 while b