#Copyright ReportLab Europe Ltd. 2000-2017 #see license.txt for license details #history https://hg.reportlab.com/hg-public/reportlab/log/tip/src/reportlab/pdfgen/pdfgeom.py __version__='3.3.0' __doc__=""" This module includes any mathematical methods needed for PIDDLE. It should have no dependencies beyond the Python library. So far, just Robert Kern's bezierArc. """ from math import sin, cos, pi, ceil def bezierArc(x1,y1, x2,y2, startAng=0, extent=90): """bezierArc(x1,y1, x2,y2, startAng=0, extent=90) --> List of Bezier curve control points. (x1, y1) and (x2, y2) are the corners of the enclosing rectangle. The coordinate system has coordinates that increase to the right and down. Angles, measured in degress, start with 0 to the right (the positive X axis) and increase counter-clockwise. The arc extends from startAng to startAng+extent. I.e. startAng=0 and extent=180 yields an openside-down semi-circle. The resulting coordinates are of the form (x1,y1, x2,y2, x3,y3, x4,y4) such that the curve goes from (x1, y1) to (x4, y4) with (x2, y2) and (x3, y3) as their respective Bezier control points.""" x1,y1, x2,y2 = min(x1,x2), max(y1,y2), max(x1,x2), min(y1,y2) if abs(extent) <= 90: arcList = [startAng] fragAngle = float(extent) Nfrag = 1 else: arcList = [] Nfrag = int(ceil(abs(extent)/90.)) fragAngle = float(extent) / Nfrag x_cen = (x1+x2)/2. y_cen = (y1+y2)/2. rx = (x2-x1)/2. ry = (y2-y1)/2. halfAng = fragAngle * pi / 360. kappa = abs(4. / 3. * (1. - cos(halfAng)) / sin(halfAng)) if fragAngle < 0: sign = -1 else: sign = 1 pointList = [] for i in range(Nfrag): theta0 = (startAng + i*fragAngle) * pi / 180. theta1 = (startAng + (i+1)*fragAngle) *pi / 180. if fragAngle > 0: pointList.append((x_cen + rx * cos(theta0), y_cen - ry * sin(theta0), x_cen + rx * (cos(theta0) - kappa * sin(theta0)), y_cen - ry * (sin(theta0) + kappa * cos(theta0)), x_cen + rx * (cos(theta1) + kappa * sin(theta1)), y_cen - ry * (sin(theta1) - kappa * cos(theta1)), x_cen + rx * cos(theta1), y_cen - ry * sin(theta1))) else: pointList.append((x_cen + rx * cos(theta0), y_cen - ry * sin(theta0), x_cen + rx * (cos(theta0) + kappa * sin(theta0)), y_cen - ry * (sin(theta0) - kappa * cos(theta0)), x_cen + rx * (cos(theta1) - kappa * sin(theta1)), y_cen - ry * (sin(theta1) + kappa * cos(theta1)), x_cen + rx * cos(theta1), y_cen - ry * sin(theta1))) return pointList