nrf_spis.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. /**
  2. * Copyright (c) 2015 - 2019, Nordic Semiconductor ASA
  3. *
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without modification,
  7. * are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form, except as embedded into a Nordic
  13. * Semiconductor ASA integrated circuit in a product or a software update for
  14. * such product, must reproduce the above copyright notice, this list of
  15. * conditions and the following disclaimer in the documentation and/or other
  16. * materials provided with the distribution.
  17. *
  18. * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
  19. * contributors may be used to endorse or promote products derived from this
  20. * software without specific prior written permission.
  21. *
  22. * 4. This software, with or without modification, must only be used with a
  23. * Nordic Semiconductor ASA integrated circuit.
  24. *
  25. * 5. Any software provided in binary form under this license must not be reverse
  26. * engineered, decompiled, modified and/or disassembled.
  27. *
  28. * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
  29. * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
  31. * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  34. * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  35. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  37. * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. *
  39. */
  40. #ifndef NRF_SPIS_H__
  41. #define NRF_SPIS_H__
  42. #include <nrfx.h>
  43. #ifdef __cplusplus
  44. extern "C" {
  45. #endif
  46. /**
  47. * @defgroup nrf_spis_hal SPIS HAL
  48. * @{
  49. * @ingroup nrf_spis
  50. * @brief Hardware access layer for managing the SPIS peripheral.
  51. */
  52. /**
  53. * @brief This value can be used as a parameter for the @ref nrf_spis_pins_set
  54. * function to specify that a given SPI signal (SCK, MOSI, or MISO)
  55. * shall not be connected to a physical pin.
  56. */
  57. #define NRF_SPIS_PIN_NOT_CONNECTED 0xFFFFFFFF
  58. /**
  59. * @brief SPIS tasks.
  60. */
  61. typedef enum
  62. {
  63. /*lint -save -e30*/
  64. NRF_SPIS_TASK_ACQUIRE = offsetof(NRF_SPIS_Type, TASKS_ACQUIRE), ///< Acquire SPI semaphore.
  65. NRF_SPIS_TASK_RELEASE = offsetof(NRF_SPIS_Type, TASKS_RELEASE), ///< Release SPI semaphore, enabling the SPI slave to acquire it.
  66. /*lint -restore*/
  67. } nrf_spis_task_t;
  68. /**
  69. * @brief SPIS events.
  70. */
  71. typedef enum
  72. {
  73. /*lint -save -e30*/
  74. NRF_SPIS_EVENT_END = offsetof(NRF_SPIS_Type, EVENTS_END), ///< Granted transaction completed.
  75. NRF_SPIS_EVENT_ACQUIRED = offsetof(NRF_SPIS_Type, EVENTS_ACQUIRED) ///< Semaphore acquired.
  76. /*lint -restore*/
  77. } nrf_spis_event_t;
  78. /**
  79. * @brief SPIS shortcuts.
  80. */
  81. typedef enum
  82. {
  83. NRF_SPIS_SHORT_END_ACQUIRE = SPIS_SHORTS_END_ACQUIRE_Msk ///< Shortcut between END event and ACQUIRE task.
  84. } nrf_spis_short_mask_t;
  85. /**
  86. * @brief SPIS interrupts.
  87. */
  88. typedef enum
  89. {
  90. NRF_SPIS_INT_END_MASK = SPIS_INTENSET_END_Msk, ///< Interrupt on END event.
  91. NRF_SPIS_INT_ACQUIRED_MASK = SPIS_INTENSET_ACQUIRED_Msk ///< Interrupt on ACQUIRED event.
  92. } nrf_spis_int_mask_t;
  93. /**
  94. * @brief SPI modes.
  95. */
  96. typedef enum
  97. {
  98. NRF_SPIS_MODE_0, ///< SCK active high, sample on leading edge of clock.
  99. NRF_SPIS_MODE_1, ///< SCK active high, sample on trailing edge of clock.
  100. NRF_SPIS_MODE_2, ///< SCK active low, sample on leading edge of clock.
  101. NRF_SPIS_MODE_3 ///< SCK active low, sample on trailing edge of clock.
  102. } nrf_spis_mode_t;
  103. /**
  104. * @brief SPI bit orders.
  105. */
  106. typedef enum
  107. {
  108. NRF_SPIS_BIT_ORDER_MSB_FIRST = SPIS_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first.
  109. NRF_SPIS_BIT_ORDER_LSB_FIRST = SPIS_CONFIG_ORDER_LsbFirst ///< Least significant bit shifted out first.
  110. } nrf_spis_bit_order_t;
  111. /**
  112. * @brief SPI semaphore status.
  113. */
  114. typedef enum
  115. {
  116. NRF_SPIS_SEMSTAT_FREE = 0, ///< Semaphore is free.
  117. NRF_SPIS_SEMSTAT_CPU = 1, ///< Semaphore is assigned to the CPU.
  118. NRF_SPIS_SEMSTAT_SPIS = 2, ///< Semaphore is assigned to the SPI slave.
  119. NRF_SPIS_SEMSTAT_CPUPENDING = 3 ///< Semaphore is assigned to the SPI, but a handover to the CPU is pending.
  120. } nrf_spis_semstat_t;
  121. /**
  122. * @brief SPIS status.
  123. */
  124. typedef enum
  125. {
  126. NRF_SPIS_STATUS_OVERREAD = SPIS_STATUS_OVERREAD_Msk, ///< TX buffer over-read detected and prevented.
  127. NRF_SPIS_STATUS_OVERFLOW = SPIS_STATUS_OVERFLOW_Msk ///< RX buffer overflow detected and prevented.
  128. } nrf_spis_status_mask_t;
  129. /**
  130. * @brief Function for activating a specific SPIS task.
  131. *
  132. * @param[in] p_reg Pointer to the peripheral registers structure.
  133. * @param[in] spis_task Task to activate.
  134. */
  135. __STATIC_INLINE void nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,
  136. nrf_spis_task_t spis_task);
  137. /**
  138. * @brief Function for getting the address of a specific SPIS task register.
  139. *
  140. * @param[in] p_reg Pointer to the peripheral registers structure.
  141. * @param[in] spis_task Requested task.
  142. *
  143. * @return Address of the specified task register.
  144. */
  145. __STATIC_INLINE uint32_t nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,
  146. nrf_spis_task_t spis_task);
  147. /**
  148. * @brief Function for clearing a specific SPIS event.
  149. *
  150. * @param[in] p_reg Pointer to the peripheral registers structure.
  151. * @param[in] spis_event Event to clear.
  152. */
  153. __STATIC_INLINE void nrf_spis_event_clear(NRF_SPIS_Type * p_reg,
  154. nrf_spis_event_t spis_event);
  155. /**
  156. * @brief Function for checking the state of a specific SPIS event.
  157. *
  158. * @param[in] p_reg Pointer to the peripheral registers structure.
  159. * @param[in] spis_event Event to check.
  160. *
  161. * @retval true If the event is set.
  162. * @retval false If the event is not set.
  163. */
  164. __STATIC_INLINE bool nrf_spis_event_check(NRF_SPIS_Type const * p_reg,
  165. nrf_spis_event_t spis_event);
  166. /**
  167. * @brief Function for getting the address of a specific SPIS event register.
  168. *
  169. * @param[in] p_reg Pointer to the peripheral registers structure.
  170. * @param[in] spis_event Requested event.
  171. *
  172. * @return Address of the specified event register.
  173. */
  174. __STATIC_INLINE uint32_t nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,
  175. nrf_spis_event_t spis_event);
  176. /**
  177. * @brief Function for enabling specified shortcuts.
  178. *
  179. * @param[in] p_reg Pointer to the peripheral registers structure.
  180. * @param[in] spis_shorts_mask Shortcuts to enable.
  181. */
  182. __STATIC_INLINE void nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,
  183. uint32_t spis_shorts_mask);
  184. /**
  185. * @brief Function for disabling specified shortcuts.
  186. *
  187. * @param[in] p_reg Pointer to the peripheral registers structure.
  188. * @param[in] spis_shorts_mask Shortcuts to disable.
  189. */
  190. __STATIC_INLINE void nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,
  191. uint32_t spis_shorts_mask);
  192. /**
  193. * @brief Function for enabling specified interrupts.
  194. *
  195. * @param[in] p_reg Pointer to the peripheral registers structure.
  196. * @param[in] spis_int_mask Interrupts to enable.
  197. */
  198. __STATIC_INLINE void nrf_spis_int_enable(NRF_SPIS_Type * p_reg,
  199. uint32_t spis_int_mask);
  200. /**
  201. * @brief Function for disabling specified interrupts.
  202. *
  203. * @param[in] p_reg Pointer to the peripheral registers structure.
  204. * @param[in] spis_int_mask Interrupts to disable.
  205. */
  206. __STATIC_INLINE void nrf_spis_int_disable(NRF_SPIS_Type * p_reg,
  207. uint32_t spis_int_mask);
  208. /**
  209. * @brief Function for retrieving the state of a given interrupt.
  210. *
  211. * @param[in] p_reg Pointer to the peripheral registers structure.
  212. * @param[in] spis_int Interrupt to check.
  213. *
  214. * @retval true If the interrupt is enabled.
  215. * @retval false If the interrupt is not enabled.
  216. */
  217. __STATIC_INLINE bool nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg,
  218. nrf_spis_int_mask_t spis_int);
  219. #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
  220. /**
  221. * @brief Function for setting the subscribe configuration for a given
  222. * SPIS task.
  223. *
  224. * @param[in] p_reg Pointer to the structure of registers of the peripheral.
  225. * @param[in] task Task for which to set the configuration.
  226. * @param[in] channel Channel through which to subscribe events.
  227. */
  228. __STATIC_INLINE void nrf_spis_subscribe_set(NRF_SPIS_Type * p_reg,
  229. nrf_spis_task_t task,
  230. uint8_t channel);
  231. /**
  232. * @brief Function for clearing the subscribe configuration for a given
  233. * SPIS task.
  234. *
  235. * @param[in] p_reg Pointer to the structure of registers of the peripheral.
  236. * @param[in] task Task for which to clear the configuration.
  237. */
  238. __STATIC_INLINE void nrf_spis_subscribe_clear(NRF_SPIS_Type * p_reg,
  239. nrf_spis_task_t task);
  240. /**
  241. * @brief Function for setting the publish configuration for a given
  242. * SPIS event.
  243. *
  244. * @param[in] p_reg Pointer to the structure of registers of the peripheral.
  245. * @param[in] event Event for which to set the configuration.
  246. * @param[in] channel Channel through which to publish the event.
  247. */
  248. __STATIC_INLINE void nrf_spis_publish_set(NRF_SPIS_Type * p_reg,
  249. nrf_spis_event_t event,
  250. uint8_t channel);
  251. /**
  252. * @brief Function for clearing the publish configuration for a given
  253. * SPIS event.
  254. *
  255. * @param[in] p_reg Pointer to the structure of registers of the peripheral.
  256. * @param[in] event Event for which to clear the configuration.
  257. */
  258. __STATIC_INLINE void nrf_spis_publish_clear(NRF_SPIS_Type * p_reg,
  259. nrf_spis_event_t event);
  260. #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
  261. /**
  262. * @brief Function for enabling the SPIS peripheral.
  263. *
  264. * @param[in] p_reg Pointer to the peripheral registers structure.
  265. */
  266. __STATIC_INLINE void nrf_spis_enable(NRF_SPIS_Type * p_reg);
  267. /**
  268. * @brief Function for disabling the SPIS peripheral.
  269. *
  270. * @param[in] p_reg Pointer to the peripheral registers structure.
  271. */
  272. __STATIC_INLINE void nrf_spis_disable(NRF_SPIS_Type * p_reg);
  273. /**
  274. * @brief Function for retrieving the SPIS semaphore status.
  275. *
  276. * @param[in] p_reg Pointer to the peripheral registers structure.
  277. *
  278. * @returns Current semaphore status.
  279. */
  280. __STATIC_INLINE nrf_spis_semstat_t nrf_spis_semaphore_status_get(NRF_SPIS_Type * p_reg);
  281. /**
  282. * @brief Function for retrieving the SPIS status.
  283. *
  284. * @param[in] p_reg Pointer to the peripheral registers structure.
  285. *
  286. * @returns Current SPIS status.
  287. */
  288. __STATIC_INLINE nrf_spis_status_mask_t nrf_spis_status_get(NRF_SPIS_Type * p_reg);
  289. /**
  290. * @brief Function for configuring SPIS pins.
  291. *
  292. * If a given signal is not needed, pass the @ref NRF_SPIS_PIN_NOT_CONNECTED
  293. * value instead of its pin number.
  294. *
  295. * @param[in] p_reg Pointer to the peripheral registers structure.
  296. * @param[in] sck_pin SCK pin number.
  297. * @param[in] mosi_pin MOSI pin number.
  298. * @param[in] miso_pin MISO pin number.
  299. * @param[in] csn_pin CSN pin number.
  300. */
  301. __STATIC_INLINE void nrf_spis_pins_set(NRF_SPIS_Type * p_reg,
  302. uint32_t sck_pin,
  303. uint32_t mosi_pin,
  304. uint32_t miso_pin,
  305. uint32_t csn_pin);
  306. /**
  307. * @brief Function for setting the transmit buffer.
  308. *
  309. * @param[in] p_reg Pointer to the peripheral registers structure.
  310. * @param[in] p_buffer Pointer to the buffer that contains the data to send.
  311. * @param[in] length Maximum number of data bytes to transmit.
  312. */
  313. __STATIC_INLINE void nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,
  314. uint8_t const * p_buffer,
  315. size_t length);
  316. /**
  317. * @brief Function for setting the receive buffer.
  318. *
  319. * @param[in] p_reg Pointer to the peripheral registers structure.
  320. * @param[in] p_buffer Pointer to the buffer for received data.
  321. * @param[in] length Maximum number of data bytes to receive.
  322. */
  323. __STATIC_INLINE void nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,
  324. uint8_t * p_buffer,
  325. size_t length);
  326. /**
  327. * @brief Function for getting the number of bytes transmitted
  328. * in the last granted transaction.
  329. *
  330. * @param[in] p_reg Pointer to the peripheral registers structure.
  331. *
  332. * @returns Number of bytes transmitted.
  333. */
  334. __STATIC_INLINE size_t nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg);
  335. /**
  336. * @brief Function for getting the number of bytes received
  337. * in the last granted transaction.
  338. *
  339. * @param[in] p_reg Pointer to the peripheral registers structure.
  340. *
  341. * @returns Number of bytes received.
  342. */
  343. __STATIC_INLINE size_t nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg);
  344. /**
  345. * @brief Function for setting the SPI configuration.
  346. *
  347. * @param[in] p_reg Pointer to the peripheral registers structure.
  348. * @param[in] spi_mode SPI mode.
  349. * @param[in] spi_bit_order SPI bit order.
  350. */
  351. __STATIC_INLINE void nrf_spis_configure(NRF_SPIS_Type * p_reg,
  352. nrf_spis_mode_t spi_mode,
  353. nrf_spis_bit_order_t spi_bit_order);
  354. /**
  355. * @brief Function for setting the default character.
  356. *
  357. * @param[in] p_reg Pointer to the peripheral registers structure.
  358. * @param[in] def Default character that is clocked out in case of
  359. * an overflow of the RXD buffer.
  360. */
  361. __STATIC_INLINE void nrf_spis_def_set(NRF_SPIS_Type * p_reg,
  362. uint8_t def);
  363. /**
  364. * @brief Function for setting the over-read character.
  365. *
  366. * @param[in] p_reg Pointer to the peripheral registers structure.
  367. * @param[in] orc Over-read character that is clocked out in case of
  368. * an over-read of the TXD buffer.
  369. */
  370. __STATIC_INLINE void nrf_spis_orc_set(NRF_SPIS_Type * p_reg,
  371. uint8_t orc);
  372. #ifndef SUPPRESS_INLINE_IMPLEMENTATION
  373. __STATIC_INLINE void nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,
  374. nrf_spis_task_t spis_task)
  375. {
  376. *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_task)) = 0x1UL;
  377. }
  378. __STATIC_INLINE uint32_t nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,
  379. nrf_spis_task_t spis_task)
  380. {
  381. return (uint32_t)p_reg + (uint32_t)spis_task;
  382. }
  383. __STATIC_INLINE void nrf_spis_event_clear(NRF_SPIS_Type * p_reg,
  384. nrf_spis_event_t spis_event)
  385. {
  386. *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event)) = 0x0UL;
  387. #if __CORTEX_M == 0x04
  388. volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event));
  389. (void)dummy;
  390. #endif
  391. }
  392. __STATIC_INLINE bool nrf_spis_event_check(NRF_SPIS_Type const * p_reg,
  393. nrf_spis_event_t spis_event)
  394. {
  395. return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event);
  396. }
  397. __STATIC_INLINE uint32_t nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,
  398. nrf_spis_event_t spis_event)
  399. {
  400. return (uint32_t)p_reg + (uint32_t)spis_event;
  401. }
  402. __STATIC_INLINE void nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,
  403. uint32_t spis_shorts_mask)
  404. {
  405. p_reg->SHORTS |= spis_shorts_mask;
  406. }
  407. __STATIC_INLINE void nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,
  408. uint32_t spis_shorts_mask)
  409. {
  410. p_reg->SHORTS &= ~(spis_shorts_mask);
  411. }
  412. __STATIC_INLINE void nrf_spis_int_enable(NRF_SPIS_Type * p_reg,
  413. uint32_t spis_int_mask)
  414. {
  415. p_reg->INTENSET = spis_int_mask;
  416. }
  417. __STATIC_INLINE void nrf_spis_int_disable(NRF_SPIS_Type * p_reg,
  418. uint32_t spis_int_mask)
  419. {
  420. p_reg->INTENCLR = spis_int_mask;
  421. }
  422. __STATIC_INLINE bool nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg,
  423. nrf_spis_int_mask_t spis_int)
  424. {
  425. return (bool)(p_reg->INTENSET & spis_int);
  426. }
  427. #if defined(DPPI_PRESENT)
  428. __STATIC_INLINE void nrf_spis_subscribe_set(NRF_SPIS_Type * p_reg,
  429. nrf_spis_task_t task,
  430. uint8_t channel)
  431. {
  432. *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) =
  433. ((uint32_t)channel | SPIS_SUBSCRIBE_ACQUIRE_EN_Msk);
  434. }
  435. __STATIC_INLINE void nrf_spis_subscribe_clear(NRF_SPIS_Type * p_reg,
  436. nrf_spis_task_t task)
  437. {
  438. *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0;
  439. }
  440. __STATIC_INLINE void nrf_spis_publish_set(NRF_SPIS_Type * p_reg,
  441. nrf_spis_event_t event,
  442. uint8_t channel)
  443. {
  444. *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) =
  445. ((uint32_t)channel | SPIS_PUBLISH_END_EN_Msk);
  446. }
  447. __STATIC_INLINE void nrf_spis_publish_clear(NRF_SPIS_Type * p_reg,
  448. nrf_spis_event_t event)
  449. {
  450. *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0;
  451. }
  452. #endif // defined(DPPI_PRESENT)
  453. __STATIC_INLINE void nrf_spis_enable(NRF_SPIS_Type * p_reg)
  454. {
  455. p_reg->ENABLE = (SPIS_ENABLE_ENABLE_Enabled << SPIS_ENABLE_ENABLE_Pos);
  456. }
  457. __STATIC_INLINE void nrf_spis_disable(NRF_SPIS_Type * p_reg)
  458. {
  459. p_reg->ENABLE = (SPIS_ENABLE_ENABLE_Disabled << SPIS_ENABLE_ENABLE_Pos);
  460. }
  461. __STATIC_INLINE nrf_spis_semstat_t nrf_spis_semaphore_status_get(NRF_SPIS_Type * p_reg)
  462. {
  463. return (nrf_spis_semstat_t) ((p_reg->SEMSTAT & SPIS_SEMSTAT_SEMSTAT_Msk)
  464. >> SPIS_SEMSTAT_SEMSTAT_Pos);
  465. }
  466. __STATIC_INLINE nrf_spis_status_mask_t nrf_spis_status_get(NRF_SPIS_Type * p_reg)
  467. {
  468. return (nrf_spis_status_mask_t) p_reg->STATUS;
  469. }
  470. __STATIC_INLINE void nrf_spis_pins_set(NRF_SPIS_Type * p_reg,
  471. uint32_t sck_pin,
  472. uint32_t mosi_pin,
  473. uint32_t miso_pin,
  474. uint32_t csn_pin)
  475. {
  476. #if defined (NRF51)
  477. p_reg->PSELSCK = sck_pin;
  478. p_reg->PSELMOSI = mosi_pin;
  479. p_reg->PSELMISO = miso_pin;
  480. p_reg->PSELCSN = csn_pin;
  481. #else
  482. p_reg->PSEL.SCK = sck_pin;
  483. p_reg->PSEL.MOSI = mosi_pin;
  484. p_reg->PSEL.MISO = miso_pin;
  485. p_reg->PSEL.CSN = csn_pin;
  486. #endif
  487. }
  488. __STATIC_INLINE void nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,
  489. uint8_t const * p_buffer,
  490. size_t length)
  491. {
  492. #if defined (NRF51)
  493. p_reg->TXDPTR = (uint32_t)p_buffer;
  494. p_reg->MAXTX = length;
  495. #else
  496. p_reg->TXD.PTR = (uint32_t)p_buffer;
  497. p_reg->TXD.MAXCNT = length;
  498. #endif
  499. }
  500. __STATIC_INLINE void nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,
  501. uint8_t * p_buffer,
  502. size_t length)
  503. {
  504. #if defined (NRF51)
  505. p_reg->RXDPTR = (uint32_t)p_buffer;
  506. p_reg->MAXRX = length;
  507. #else
  508. p_reg->RXD.PTR = (uint32_t)p_buffer;
  509. p_reg->RXD.MAXCNT = length;
  510. #endif
  511. }
  512. __STATIC_INLINE size_t nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg)
  513. {
  514. #if defined (NRF51)
  515. return p_reg->AMOUNTTX;
  516. #else
  517. return p_reg->TXD.AMOUNT;
  518. #endif
  519. }
  520. __STATIC_INLINE size_t nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg)
  521. {
  522. #if defined (NRF51)
  523. return p_reg->AMOUNTRX;
  524. #else
  525. return p_reg->RXD.AMOUNT;
  526. #endif
  527. }
  528. __STATIC_INLINE void nrf_spis_configure(NRF_SPIS_Type * p_reg,
  529. nrf_spis_mode_t spi_mode,
  530. nrf_spis_bit_order_t spi_bit_order)
  531. {
  532. uint32_t config = (spi_bit_order == NRF_SPIS_BIT_ORDER_MSB_FIRST ?
  533. SPIS_CONFIG_ORDER_MsbFirst : SPIS_CONFIG_ORDER_LsbFirst);
  534. switch (spi_mode)
  535. {
  536. default:
  537. case NRF_SPIS_MODE_0:
  538. config |= (SPIS_CONFIG_CPOL_ActiveHigh << SPIS_CONFIG_CPOL_Pos) |
  539. (SPIS_CONFIG_CPHA_Leading << SPIS_CONFIG_CPHA_Pos);
  540. break;
  541. case NRF_SPIS_MODE_1:
  542. config |= (SPIS_CONFIG_CPOL_ActiveHigh << SPIS_CONFIG_CPOL_Pos) |
  543. (SPIS_CONFIG_CPHA_Trailing << SPIS_CONFIG_CPHA_Pos);
  544. break;
  545. case NRF_SPIS_MODE_2:
  546. config |= (SPIS_CONFIG_CPOL_ActiveLow << SPIS_CONFIG_CPOL_Pos) |
  547. (SPIS_CONFIG_CPHA_Leading << SPIS_CONFIG_CPHA_Pos);
  548. break;
  549. case NRF_SPIS_MODE_3:
  550. config |= (SPIS_CONFIG_CPOL_ActiveLow << SPIS_CONFIG_CPOL_Pos) |
  551. (SPIS_CONFIG_CPHA_Trailing << SPIS_CONFIG_CPHA_Pos);
  552. break;
  553. }
  554. p_reg->CONFIG = config;
  555. }
  556. __STATIC_INLINE void nrf_spis_orc_set(NRF_SPIS_Type * p_reg,
  557. uint8_t orc)
  558. {
  559. p_reg->ORC = orc;
  560. }
  561. __STATIC_INLINE void nrf_spis_def_set(NRF_SPIS_Type * p_reg,
  562. uint8_t def)
  563. {
  564. p_reg->DEF = def;
  565. }
  566. #endif // SUPPRESS_INLINE_IMPLEMENTATION
  567. /** @} */
  568. #ifdef __cplusplus
  569. }
  570. #endif
  571. #endif // NRF_SPIS_H__