123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- /*
- * Copyright (c) 2004-2005, Swedish Institute of Computer Science.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the Institute nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file is part of the protothreads library.
- *
- * Author: Adam Dunkels <adam@sics.se>
- *
- * $Id: example-codelock.c,v 1.5 2005/10/06 07:57:08 adam Exp $
- */
- /*
- *
- * This example shows how to implement a simple code lock. The code
- * lock waits for key presses from a numeric keyboard and if the
- * correct code is entered, the lock is unlocked. There is a maximum
- * time of one second between each key press, and after the correct
- * code has been entered, no more keys must be pressed for 0.5 seconds
- * before the lock is opened.
- *
- * This is an example that shows two things:
- * - how to implement a code lock key input mechanism, and
- * - how to implement a sequential timed routine.
- *
- * The program consists of two protothreads, one that implements the
- * code lock reader and one that implements simulated keyboard input.
- *
- *
- */
- #ifdef _WIN32
- #include <windows.h>
- #else
- #include <unistd.h>
- #include <sys/time.h>
- #endif
- #include <stdio.h>
- #include "pt.h"
- /*---------------------------------------------------------------------------*/
- /*
- * The following definitions are just for the simple timer library
- * used in this example. The actual implementation of the functions
- * can be found at the end of this file.
- */
- struct timer { int start, interval; };
- static int timer_expired(struct timer *t);
- static void timer_set(struct timer *t, int usecs);
- /*---------------------------------------------------------------------------*/
- /*
- * This example uses two timers: one for the code lock protothread and
- * one for the simulated key input protothread.
- */
- static struct timer codelock_timer, input_timer;
- /*---------------------------------------------------------------------------*/
- /*
- * This is the code that has to be entered.
- */
- static const char code[4] = {'1', '4', '2', '3'};
- /*---------------------------------------------------------------------------*/
- /*
- * This example has two protothread and therefor has two protothread
- * control structures of type struct pt. These are initialized with
- * PT_INIT() in the main() function below.
- */
- static struct pt codelock_pt, input_pt;
- /*---------------------------------------------------------------------------*/
- /*
- * The following code implements a simple key input. Input is made
- * with the press_key() function, and the function key_pressed()
- * checks if a key has been pressed. The variable "key" holds the
- * latest key that was pressed. The variable "key_pressed_flag" is set
- * when a key is pressed and cleared when a key press is checked.
- */
- static char key, key_pressed_flag;
- static void
- press_key(char k)
- {
- printf("--- Key '%c' pressed\n", k);
- key = k;
- key_pressed_flag = 1;
- }
- static int
- key_pressed(void)
- {
- if(key_pressed_flag != 0) {
- key_pressed_flag = 0;
- return 1;
- }
- return 0;
- }
- /*---------------------------------------------------------------------------*/
- /*
- * Declaration of the protothread function implementing the code lock
- * logic. The protothread function is declared using the PT_THREAD()
- * macro. The function is declared with the "static" keyword since it
- * is local to this file. The name of the function is codelock_thread
- * and it takes one argument, pt, of the type struct pt.
- *
- */
- static
- PT_THREAD(codelock_thread(struct pt *pt))
- {
- /* This is a local variable that holds the number of keys that have
- * been pressed. Note that it is declared with the "static" keyword
- * to make sure that the variable is *not* allocated on the stack.
- */
- static int keys;
- /*
- * Declare the beginning of the protothread.
- */
- PT_BEGIN(pt);
- /*
- * We'll let the protothread loop until the protothread is
- * expliticly exited with PT_EXIT().
- */
- while(1) {
- /*
- * We'll be reading key presses until we get the right amount of
- * correct keys.
- */
- for(keys = 0; keys < sizeof(code); ++keys) {
- /*
- * If we haven't gotten any keypresses, we'll simply wait for one.
- */
- if(keys == 0) {
- /*
- * The PT_WAIT_UNTIL() function will block until the condition
- * key_pressed() is true.
- */
- PT_WAIT_UNTIL(pt, key_pressed());
- } else {
-
- /*
- * If the "key" variable was larger than zero, we have already
- * gotten at least one correct key press. If so, we'll not
- * only wait for the next key, but we'll also set a timer that
- * expires in one second. This gives the person pressing the
- * keys one second to press the next key in the code.
- */
- timer_set(&codelock_timer, 1000);
- /*
- * The following statement shows how complex blocking
- * conditions can be easily expressed with protothreads and
- * the PT_WAIT_UNTIL() function.
- */
- PT_WAIT_UNTIL(pt, key_pressed() || timer_expired(&codelock_timer));
- /*
- * If the timer expired, we should break out of the for() loop
- * and start reading keys from the beginning of the while(1)
- * loop instead.
- */
- if(timer_expired(&codelock_timer)) {
- printf("Code lock timer expired.\n");
-
- /*
- * Break out from the for() loop and start from the
- * beginning of the while(1) loop.
- */
- break;
- }
- }
- /*
- * Check if the pressed key was correct.
- */
- if(key != code[keys]) {
- printf("Incorrect key '%c' found\n", key);
- /*
- * Break out of the for() loop since the key was incorrect.
- */
- break;
- } else {
- printf("Correct key '%c' found\n", key);
- }
- }
- /*
- * Check if we have gotten all keys.
- */
- if(keys == sizeof(code)) {
- printf("Correct code entered, waiting for 500 ms before unlocking.\n");
- /*
- * Ok, we got the correct code. But to make sure that the code
- * was not just a fluke of luck by an intruder, but the correct
- * code entered by a person that knows the correct code, we'll
- * wait for half a second before opening the lock. If another
- * key is pressed during this time, we'll assume that it was a
- * fluke of luck that the correct code was entered the first
- * time.
- */
- timer_set(&codelock_timer, 500);
- PT_WAIT_UNTIL(pt, key_pressed() || timer_expired(&codelock_timer));
- /*
- * If we continued from the PT_WAIT_UNTIL() statement without
- * the timer expired, we don't open the lock.
- */
- if(!timer_expired(&codelock_timer)) {
- printf("Key pressed during final wait, code lock locked again.\n");
- } else {
- /*
- * If the timer expired, we'll open the lock and exit from the
- * protothread.
- */
- printf("Code lock unlocked.\n");
- PT_EXIT(pt);
- }
- }
- }
- /*
- * Finally, we'll mark the end of the protothread.
- */
- PT_END(pt);
- }
- /*---------------------------------------------------------------------------*/
- /*
- * This is the second protothread in this example. It implements a
- * simulated user pressing the keys. This illustrates how a linear
- * sequence of timed instructions can be implemented with
- * protothreads.
- */
- static
- PT_THREAD(input_thread(struct pt *pt))
- {
- PT_BEGIN(pt);
- printf("Waiting 1 second before entering first key.\n");
-
- timer_set(&input_timer, 1000);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
- press_key('1');
-
- timer_set(&input_timer, 100);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('2');
- timer_set(&input_timer, 100);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('3');
- timer_set(&input_timer, 2000);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('1');
- timer_set(&input_timer, 200);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('4');
- timer_set(&input_timer, 200);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('2');
-
- timer_set(&input_timer, 2000);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('3');
- timer_set(&input_timer, 200);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('1');
- timer_set(&input_timer, 200);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('4');
- timer_set(&input_timer, 200);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('2');
-
- timer_set(&input_timer, 100);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('3');
- timer_set(&input_timer, 100);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('4');
- timer_set(&input_timer, 1500);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('1');
- timer_set(&input_timer, 300);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('4');
- timer_set(&input_timer, 400);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('2');
- timer_set(&input_timer, 500);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- press_key('3');
- timer_set(&input_timer, 2000);
- PT_WAIT_UNTIL(pt, timer_expired(&input_timer));
-
- PT_END(pt);
- }
- /*---------------------------------------------------------------------------*/
- /*
- * This is the main function. It initializes the two protothread
- * control structures and schedules the two protothreads. The main
- * function returns when the protothread the runs the code lock exits.
- */
- int
- main(void)
- {
- /*
- * Initialize the two protothread control structures.
- */
- PT_INIT(&input_pt);
- PT_INIT(&codelock_pt);
- /*
- * Schedule the two protothreads until the codelock_thread() exits.
- */
- while(PT_SCHEDULE(codelock_thread(&codelock_pt))) {
- PT_SCHEDULE(input_thread(&input_pt));
-
- /*
- * When running this example on a multitasking system, we must
- * give other processes a chance to run too and therefore we call
- * usleep() resp. Sleep() here. On a dedicated embedded system,
- * we usually do not need to do this.
- */
- #ifdef _WIN32
- Sleep(0);
- #else
- usleep(10);
- #endif
- }
- return 0;
- }
- /*---------------------------------------------------------------------------*/
- /*
- * Finally, the implementation of the simple timer library follows.
- */
- #ifdef _WIN32
- static int clock_time(void)
- { return (int)GetTickCount(); }
- #else /* _WIN32 */
- static int clock_time(void)
- {
- struct timeval tv;
- struct timezone tz;
- gettimeofday(&tv, &tz);
- return tv.tv_sec * 1000 + tv.tv_usec / 1000;
- }
- #endif /* _WIN32 */
- static int timer_expired(struct timer *t)
- { return (int)(clock_time() - t->start) >= (int)t->interval; }
- static void timer_set(struct timer *t, int interval)
- { t->interval = interval; t->start = clock_time(); }
- /*---------------------------------------------------------------------------*/
|