ecp_curves.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325
  1. /*
  2. * Elliptic curves over GF(p): curve-specific data and functions
  3. *
  4. * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. *
  19. * This file is part of mbed TLS (https://tls.mbed.org)
  20. */
  21. #if !defined(MBEDTLS_CONFIG_FILE)
  22. #include "mbedtls/config.h"
  23. #else
  24. #include MBEDTLS_CONFIG_FILE
  25. #endif
  26. #if defined(MBEDTLS_ECP_C)
  27. #include "mbedtls/ecp.h"
  28. #include <string.h>
  29. #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
  30. !defined(inline) && !defined(__cplusplus)
  31. #define inline __inline
  32. #endif
  33. /*
  34. * Conversion macros for embedded constants:
  35. * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
  36. */
  37. #if defined(MBEDTLS_HAVE_INT32)
  38. #define BYTES_TO_T_UINT_4( a, b, c, d ) \
  39. ( (mbedtls_mpi_uint) a << 0 ) | \
  40. ( (mbedtls_mpi_uint) b << 8 ) | \
  41. ( (mbedtls_mpi_uint) c << 16 ) | \
  42. ( (mbedtls_mpi_uint) d << 24 )
  43. #define BYTES_TO_T_UINT_2( a, b ) \
  44. BYTES_TO_T_UINT_4( a, b, 0, 0 )
  45. #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
  46. BYTES_TO_T_UINT_4( a, b, c, d ), \
  47. BYTES_TO_T_UINT_4( e, f, g, h )
  48. #else /* 64-bits */
  49. #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
  50. ( (mbedtls_mpi_uint) a << 0 ) | \
  51. ( (mbedtls_mpi_uint) b << 8 ) | \
  52. ( (mbedtls_mpi_uint) c << 16 ) | \
  53. ( (mbedtls_mpi_uint) d << 24 ) | \
  54. ( (mbedtls_mpi_uint) e << 32 ) | \
  55. ( (mbedtls_mpi_uint) f << 40 ) | \
  56. ( (mbedtls_mpi_uint) g << 48 ) | \
  57. ( (mbedtls_mpi_uint) h << 56 )
  58. #define BYTES_TO_T_UINT_4( a, b, c, d ) \
  59. BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
  60. #define BYTES_TO_T_UINT_2( a, b ) \
  61. BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
  62. #endif /* bits in mbedtls_mpi_uint */
  63. /*
  64. * Note: the constants are in little-endian order
  65. * to be directly usable in MPIs
  66. */
  67. /*
  68. * Domain parameters for secp192r1
  69. */
  70. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  71. static const mbedtls_mpi_uint secp192r1_p[] = {
  72. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  73. BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  74. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  75. };
  76. static const mbedtls_mpi_uint secp192r1_b[] = {
  77. BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
  78. BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
  79. BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
  80. };
  81. static const mbedtls_mpi_uint secp192r1_gx[] = {
  82. BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
  83. BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
  84. BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
  85. };
  86. static const mbedtls_mpi_uint secp192r1_gy[] = {
  87. BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
  88. BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
  89. BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
  90. };
  91. static const mbedtls_mpi_uint secp192r1_n[] = {
  92. BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
  93. BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
  94. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  95. };
  96. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  97. /*
  98. * Domain parameters for secp224r1
  99. */
  100. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  101. static const mbedtls_mpi_uint secp224r1_p[] = {
  102. BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  103. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  104. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  105. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  106. };
  107. static const mbedtls_mpi_uint secp224r1_b[] = {
  108. BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
  109. BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
  110. BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
  111. BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
  112. };
  113. static const mbedtls_mpi_uint secp224r1_gx[] = {
  114. BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
  115. BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
  116. BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
  117. BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
  118. };
  119. static const mbedtls_mpi_uint secp224r1_gy[] = {
  120. BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
  121. BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
  122. BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
  123. BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
  124. };
  125. static const mbedtls_mpi_uint secp224r1_n[] = {
  126. BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
  127. BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
  128. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  129. BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
  130. };
  131. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  132. /*
  133. * Domain parameters for secp256r1
  134. */
  135. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  136. static const mbedtls_mpi_uint secp256r1_p[] = {
  137. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  138. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  139. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  140. BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  141. };
  142. static const mbedtls_mpi_uint secp256r1_b[] = {
  143. BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
  144. BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
  145. BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
  146. BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
  147. };
  148. static const mbedtls_mpi_uint secp256r1_gx[] = {
  149. BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
  150. BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
  151. BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
  152. BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
  153. };
  154. static const mbedtls_mpi_uint secp256r1_gy[] = {
  155. BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
  156. BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
  157. BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
  158. BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
  159. };
  160. static const mbedtls_mpi_uint secp256r1_n[] = {
  161. BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
  162. BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
  163. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  164. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  165. };
  166. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  167. /*
  168. * Domain parameters for secp384r1
  169. */
  170. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  171. static const mbedtls_mpi_uint secp384r1_p[] = {
  172. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  173. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  174. BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  175. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  176. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  177. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  178. };
  179. static const mbedtls_mpi_uint secp384r1_b[] = {
  180. BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
  181. BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
  182. BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
  183. BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
  184. BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
  185. BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
  186. };
  187. static const mbedtls_mpi_uint secp384r1_gx[] = {
  188. BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
  189. BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
  190. BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
  191. BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
  192. BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
  193. BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
  194. };
  195. static const mbedtls_mpi_uint secp384r1_gy[] = {
  196. BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
  197. BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
  198. BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
  199. BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
  200. BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
  201. BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
  202. };
  203. static const mbedtls_mpi_uint secp384r1_n[] = {
  204. BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
  205. BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
  206. BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
  207. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  208. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  209. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  210. };
  211. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  212. /*
  213. * Domain parameters for secp521r1
  214. */
  215. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  216. static const mbedtls_mpi_uint secp521r1_p[] = {
  217. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  218. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  219. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  220. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  221. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  222. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  223. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  224. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  225. BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
  226. };
  227. static const mbedtls_mpi_uint secp521r1_b[] = {
  228. BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
  229. BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
  230. BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
  231. BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
  232. BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
  233. BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
  234. BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
  235. BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
  236. BYTES_TO_T_UINT_2( 0x51, 0x00 ),
  237. };
  238. static const mbedtls_mpi_uint secp521r1_gx[] = {
  239. BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
  240. BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
  241. BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
  242. BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
  243. BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
  244. BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
  245. BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
  246. BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
  247. BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
  248. };
  249. static const mbedtls_mpi_uint secp521r1_gy[] = {
  250. BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
  251. BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
  252. BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
  253. BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
  254. BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
  255. BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
  256. BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
  257. BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
  258. BYTES_TO_T_UINT_2( 0x18, 0x01 ),
  259. };
  260. static const mbedtls_mpi_uint secp521r1_n[] = {
  261. BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
  262. BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
  263. BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
  264. BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
  265. BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  266. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  267. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  268. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  269. BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
  270. };
  271. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  272. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  273. static const mbedtls_mpi_uint secp192k1_p[] = {
  274. BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  275. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  276. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  277. };
  278. static const mbedtls_mpi_uint secp192k1_a[] = {
  279. BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  280. };
  281. static const mbedtls_mpi_uint secp192k1_b[] = {
  282. BYTES_TO_T_UINT_2( 0x03, 0x00 ),
  283. };
  284. static const mbedtls_mpi_uint secp192k1_gx[] = {
  285. BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
  286. BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
  287. BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
  288. };
  289. static const mbedtls_mpi_uint secp192k1_gy[] = {
  290. BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
  291. BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
  292. BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
  293. };
  294. static const mbedtls_mpi_uint secp192k1_n[] = {
  295. BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
  296. BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
  297. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  298. };
  299. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  300. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  301. static const mbedtls_mpi_uint secp224k1_p[] = {
  302. BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  303. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  304. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  305. BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
  306. };
  307. static const mbedtls_mpi_uint secp224k1_a[] = {
  308. BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  309. };
  310. static const mbedtls_mpi_uint secp224k1_b[] = {
  311. BYTES_TO_T_UINT_2( 0x05, 0x00 ),
  312. };
  313. static const mbedtls_mpi_uint secp224k1_gx[] = {
  314. BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
  315. BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
  316. BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
  317. BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
  318. };
  319. static const mbedtls_mpi_uint secp224k1_gy[] = {
  320. BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
  321. BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
  322. BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
  323. BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
  324. };
  325. static const mbedtls_mpi_uint secp224k1_n[] = {
  326. BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
  327. BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
  328. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  329. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
  330. };
  331. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  332. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  333. static const mbedtls_mpi_uint secp256k1_p[] = {
  334. BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  335. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  336. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  337. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  338. };
  339. static const mbedtls_mpi_uint secp256k1_a[] = {
  340. BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  341. };
  342. static const mbedtls_mpi_uint secp256k1_b[] = {
  343. BYTES_TO_T_UINT_2( 0x07, 0x00 ),
  344. };
  345. static const mbedtls_mpi_uint secp256k1_gx[] = {
  346. BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
  347. BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
  348. BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
  349. BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
  350. };
  351. static const mbedtls_mpi_uint secp256k1_gy[] = {
  352. BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
  353. BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
  354. BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
  355. BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
  356. };
  357. static const mbedtls_mpi_uint secp256k1_n[] = {
  358. BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
  359. BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
  360. BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  361. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  362. };
  363. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  364. /*
  365. * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
  366. */
  367. #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
  368. static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
  369. BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
  370. BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
  371. BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
  372. BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
  373. };
  374. static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
  375. BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
  376. BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
  377. BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
  378. BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
  379. };
  380. static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
  381. BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
  382. BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
  383. BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
  384. BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
  385. };
  386. static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
  387. BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
  388. BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
  389. BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
  390. BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
  391. };
  392. static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
  393. BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
  394. BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
  395. BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
  396. BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
  397. };
  398. static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
  399. BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
  400. BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
  401. BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
  402. BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
  403. };
  404. #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
  405. /*
  406. * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
  407. */
  408. #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
  409. static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
  410. BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
  411. BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
  412. BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
  413. BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
  414. BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
  415. BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
  416. };
  417. static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
  418. BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
  419. BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
  420. BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
  421. BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
  422. BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
  423. BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
  424. };
  425. static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
  426. BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
  427. BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
  428. BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
  429. BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
  430. BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
  431. BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
  432. };
  433. static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
  434. BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
  435. BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
  436. BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
  437. BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
  438. BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
  439. BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
  440. };
  441. static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
  442. BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
  443. BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
  444. BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
  445. BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
  446. BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
  447. BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
  448. };
  449. static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
  450. BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
  451. BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
  452. BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
  453. BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
  454. BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
  455. BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
  456. };
  457. #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
  458. /*
  459. * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
  460. */
  461. #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
  462. static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
  463. BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
  464. BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
  465. BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
  466. BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
  467. BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
  468. BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
  469. BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
  470. BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
  471. };
  472. static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
  473. BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
  474. BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
  475. BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
  476. BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
  477. BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
  478. BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
  479. BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
  480. BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
  481. };
  482. static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
  483. BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
  484. BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
  485. BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
  486. BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
  487. BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
  488. BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
  489. BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
  490. BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
  491. };
  492. static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
  493. BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
  494. BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
  495. BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
  496. BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
  497. BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
  498. BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
  499. BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
  500. BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
  501. };
  502. static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
  503. BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
  504. BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
  505. BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
  506. BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
  507. BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
  508. BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
  509. BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
  510. BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
  511. };
  512. static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
  513. BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
  514. BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
  515. BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
  516. BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
  517. BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
  518. BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
  519. BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
  520. BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
  521. };
  522. #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
  523. /*
  524. * Create an MPI from embedded constants
  525. * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
  526. */
  527. static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
  528. {
  529. X->s = 1;
  530. X->n = len / sizeof( mbedtls_mpi_uint );
  531. X->p = (mbedtls_mpi_uint *) p;
  532. }
  533. /*
  534. * Set an MPI to static value 1
  535. */
  536. static inline void ecp_mpi_set1( mbedtls_mpi *X )
  537. {
  538. static mbedtls_mpi_uint one[] = { 1 };
  539. X->s = 1;
  540. X->n = 1;
  541. X->p = one;
  542. }
  543. /*
  544. * Make group available from embedded constants
  545. */
  546. static int ecp_group_load( mbedtls_ecp_group *grp,
  547. const mbedtls_mpi_uint *p, size_t plen,
  548. const mbedtls_mpi_uint *a, size_t alen,
  549. const mbedtls_mpi_uint *b, size_t blen,
  550. const mbedtls_mpi_uint *gx, size_t gxlen,
  551. const mbedtls_mpi_uint *gy, size_t gylen,
  552. const mbedtls_mpi_uint *n, size_t nlen)
  553. {
  554. ecp_mpi_load( &grp->P, p, plen );
  555. if( a != NULL )
  556. ecp_mpi_load( &grp->A, a, alen );
  557. ecp_mpi_load( &grp->B, b, blen );
  558. ecp_mpi_load( &grp->N, n, nlen );
  559. ecp_mpi_load( &grp->G.X, gx, gxlen );
  560. ecp_mpi_load( &grp->G.Y, gy, gylen );
  561. ecp_mpi_set1( &grp->G.Z );
  562. grp->pbits = mbedtls_mpi_bitlen( &grp->P );
  563. grp->nbits = mbedtls_mpi_bitlen( &grp->N );
  564. grp->h = 1;
  565. return( 0 );
  566. }
  567. #if defined(MBEDTLS_ECP_NIST_OPTIM)
  568. /* Forward declarations */
  569. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  570. static int ecp_mod_p192( mbedtls_mpi * );
  571. #endif
  572. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  573. static int ecp_mod_p224( mbedtls_mpi * );
  574. #endif
  575. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  576. static int ecp_mod_p256( mbedtls_mpi * );
  577. #endif
  578. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  579. static int ecp_mod_p384( mbedtls_mpi * );
  580. #endif
  581. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  582. static int ecp_mod_p521( mbedtls_mpi * );
  583. #endif
  584. #define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
  585. #else
  586. #define NIST_MODP( P )
  587. #endif /* MBEDTLS_ECP_NIST_OPTIM */
  588. /* Additional forward declarations */
  589. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  590. static int ecp_mod_p255( mbedtls_mpi * );
  591. #endif
  592. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  593. static int ecp_mod_p192k1( mbedtls_mpi * );
  594. #endif
  595. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  596. static int ecp_mod_p224k1( mbedtls_mpi * );
  597. #endif
  598. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  599. static int ecp_mod_p256k1( mbedtls_mpi * );
  600. #endif
  601. #define LOAD_GROUP_A( G ) ecp_group_load( grp, \
  602. G ## _p, sizeof( G ## _p ), \
  603. G ## _a, sizeof( G ## _a ), \
  604. G ## _b, sizeof( G ## _b ), \
  605. G ## _gx, sizeof( G ## _gx ), \
  606. G ## _gy, sizeof( G ## _gy ), \
  607. G ## _n, sizeof( G ## _n ) )
  608. #define LOAD_GROUP( G ) ecp_group_load( grp, \
  609. G ## _p, sizeof( G ## _p ), \
  610. NULL, 0, \
  611. G ## _b, sizeof( G ## _b ), \
  612. G ## _gx, sizeof( G ## _gx ), \
  613. G ## _gy, sizeof( G ## _gy ), \
  614. G ## _n, sizeof( G ## _n ) )
  615. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  616. /*
  617. * Specialized function for creating the Curve25519 group
  618. */
  619. static int ecp_use_curve25519( mbedtls_ecp_group *grp )
  620. {
  621. int ret;
  622. /* Actually ( A + 2 ) / 4 */
  623. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
  624. /* P = 2^255 - 19 */
  625. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
  626. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
  627. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
  628. grp->pbits = mbedtls_mpi_bitlen( &grp->P );
  629. /* Y intentionaly not set, since we use x/z coordinates.
  630. * This is used as a marker to identify Montgomery curves! */
  631. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
  632. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
  633. mbedtls_mpi_free( &grp->G.Y );
  634. /* Actually, the required msb for private keys */
  635. grp->nbits = 254;
  636. cleanup:
  637. if( ret != 0 )
  638. mbedtls_ecp_group_free( grp );
  639. return( ret );
  640. }
  641. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  642. /*
  643. * Set a group using well-known domain parameters
  644. */
  645. int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
  646. {
  647. mbedtls_ecp_group_free( grp );
  648. grp->id = id;
  649. switch( id )
  650. {
  651. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  652. case MBEDTLS_ECP_DP_SECP192R1:
  653. NIST_MODP( p192 );
  654. return( LOAD_GROUP( secp192r1 ) );
  655. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  656. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  657. case MBEDTLS_ECP_DP_SECP224R1:
  658. NIST_MODP( p224 );
  659. return( LOAD_GROUP( secp224r1 ) );
  660. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  661. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  662. case MBEDTLS_ECP_DP_SECP256R1:
  663. NIST_MODP( p256 );
  664. return( LOAD_GROUP( secp256r1 ) );
  665. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  666. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  667. case MBEDTLS_ECP_DP_SECP384R1:
  668. NIST_MODP( p384 );
  669. return( LOAD_GROUP( secp384r1 ) );
  670. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  671. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  672. case MBEDTLS_ECP_DP_SECP521R1:
  673. NIST_MODP( p521 );
  674. return( LOAD_GROUP( secp521r1 ) );
  675. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  676. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  677. case MBEDTLS_ECP_DP_SECP192K1:
  678. grp->modp = ecp_mod_p192k1;
  679. return( LOAD_GROUP_A( secp192k1 ) );
  680. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  681. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  682. case MBEDTLS_ECP_DP_SECP224K1:
  683. grp->modp = ecp_mod_p224k1;
  684. return( LOAD_GROUP_A( secp224k1 ) );
  685. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  686. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  687. case MBEDTLS_ECP_DP_SECP256K1:
  688. grp->modp = ecp_mod_p256k1;
  689. return( LOAD_GROUP_A( secp256k1 ) );
  690. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  691. #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
  692. case MBEDTLS_ECP_DP_BP256R1:
  693. return( LOAD_GROUP_A( brainpoolP256r1 ) );
  694. #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
  695. #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
  696. case MBEDTLS_ECP_DP_BP384R1:
  697. return( LOAD_GROUP_A( brainpoolP384r1 ) );
  698. #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
  699. #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
  700. case MBEDTLS_ECP_DP_BP512R1:
  701. return( LOAD_GROUP_A( brainpoolP512r1 ) );
  702. #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
  703. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  704. case MBEDTLS_ECP_DP_CURVE25519:
  705. grp->modp = ecp_mod_p255;
  706. return( ecp_use_curve25519( grp ) );
  707. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  708. default:
  709. mbedtls_ecp_group_free( grp );
  710. return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
  711. }
  712. }
  713. #if defined(MBEDTLS_ECP_NIST_OPTIM)
  714. /*
  715. * Fast reduction modulo the primes used by the NIST curves.
  716. *
  717. * These functions are critical for speed, but not needed for correct
  718. * operations. So, we make the choice to heavily rely on the internals of our
  719. * bignum library, which creates a tight coupling between these functions and
  720. * our MPI implementation. However, the coupling between the ECP module and
  721. * MPI remains loose, since these functions can be deactivated at will.
  722. */
  723. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  724. /*
  725. * Compared to the way things are presented in FIPS 186-3 D.2,
  726. * we proceed in columns, from right (least significant chunk) to left,
  727. * adding chunks to N in place, and keeping a carry for the next chunk.
  728. * This avoids moving things around in memory, and uselessly adding zeros,
  729. * compared to the more straightforward, line-oriented approach.
  730. *
  731. * For this prime we need to handle data in chunks of 64 bits.
  732. * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
  733. * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
  734. */
  735. /* Add 64-bit chunks (dst += src) and update carry */
  736. static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
  737. {
  738. unsigned char i;
  739. mbedtls_mpi_uint c = 0;
  740. for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
  741. {
  742. *dst += c; c = ( *dst < c );
  743. *dst += *src; c += ( *dst < *src );
  744. }
  745. *carry += c;
  746. }
  747. /* Add carry to a 64-bit chunk and update carry */
  748. static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
  749. {
  750. unsigned char i;
  751. for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
  752. {
  753. *dst += *carry;
  754. *carry = ( *dst < *carry );
  755. }
  756. }
  757. #define WIDTH 8 / sizeof( mbedtls_mpi_uint )
  758. #define A( i ) N->p + i * WIDTH
  759. #define ADD( i ) add64( p, A( i ), &c )
  760. #define NEXT p += WIDTH; carry64( p, &c )
  761. #define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
  762. /*
  763. * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
  764. */
  765. static int ecp_mod_p192( mbedtls_mpi *N )
  766. {
  767. int ret;
  768. mbedtls_mpi_uint c = 0;
  769. mbedtls_mpi_uint *p, *end;
  770. /* Make sure we have enough blocks so that A(5) is legal */
  771. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
  772. p = N->p;
  773. end = p + N->n;
  774. ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
  775. ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
  776. ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
  777. cleanup:
  778. return( ret );
  779. }
  780. #undef WIDTH
  781. #undef A
  782. #undef ADD
  783. #undef NEXT
  784. #undef LAST
  785. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  786. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
  787. defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
  788. defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  789. /*
  790. * The reader is advised to first understand ecp_mod_p192() since the same
  791. * general structure is used here, but with additional complications:
  792. * (1) chunks of 32 bits, and (2) subtractions.
  793. */
  794. /*
  795. * For these primes, we need to handle data in chunks of 32 bits.
  796. * This makes it more complicated if we use 64 bits limbs in MPI,
  797. * which prevents us from using a uniform access method as for p192.
  798. *
  799. * So, we define a mini abstraction layer to access 32 bit chunks,
  800. * load them in 'cur' for work, and store them back from 'cur' when done.
  801. *
  802. * While at it, also define the size of N in terms of 32-bit chunks.
  803. */
  804. #define LOAD32 cur = A( i );
  805. #if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
  806. #define MAX32 N->n
  807. #define A( j ) N->p[j]
  808. #define STORE32 N->p[i] = cur;
  809. #else /* 64-bit */
  810. #define MAX32 N->n * 2
  811. #define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
  812. #define STORE32 \
  813. if( i % 2 ) { \
  814. N->p[i/2] &= 0x00000000FFFFFFFF; \
  815. N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
  816. } else { \
  817. N->p[i/2] &= 0xFFFFFFFF00000000; \
  818. N->p[i/2] |= (mbedtls_mpi_uint) cur; \
  819. }
  820. #endif /* sizeof( mbedtls_mpi_uint ) */
  821. /*
  822. * Helpers for addition and subtraction of chunks, with signed carry.
  823. */
  824. static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
  825. {
  826. *dst += src;
  827. *carry += ( *dst < src );
  828. }
  829. static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
  830. {
  831. *carry -= ( *dst < src );
  832. *dst -= src;
  833. }
  834. #define ADD( j ) add32( &cur, A( j ), &c );
  835. #define SUB( j ) sub32( &cur, A( j ), &c );
  836. /*
  837. * Helpers for the main 'loop'
  838. * (see fix_negative for the motivation of C)
  839. */
  840. #define INIT( b ) \
  841. int ret; \
  842. signed char c = 0, cc; \
  843. uint32_t cur; \
  844. size_t i = 0, bits = b; \
  845. mbedtls_mpi C; \
  846. mbedtls_mpi_uint Cp[ b / 8 / sizeof( mbedtls_mpi_uint) + 1 ]; \
  847. \
  848. C.s = 1; \
  849. C.n = b / 8 / sizeof( mbedtls_mpi_uint) + 1; \
  850. C.p = Cp; \
  851. memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) ); \
  852. \
  853. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, b * 2 / 8 / sizeof( mbedtls_mpi_uint ) ) ); \
  854. LOAD32;
  855. #define NEXT \
  856. STORE32; i++; LOAD32; \
  857. cc = c; c = 0; \
  858. if( cc < 0 ) \
  859. sub32( &cur, -cc, &c ); \
  860. else \
  861. add32( &cur, cc, &c ); \
  862. #define LAST \
  863. STORE32; i++; \
  864. cur = c > 0 ? c : 0; STORE32; \
  865. cur = 0; while( ++i < MAX32 ) { STORE32; } \
  866. if( c < 0 ) fix_negative( N, c, &C, bits );
  867. /*
  868. * If the result is negative, we get it in the form
  869. * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
  870. */
  871. static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
  872. {
  873. int ret;
  874. /* C = - c * 2^(bits + 32) */
  875. #if !defined(MBEDTLS_HAVE_INT64)
  876. ((void) bits);
  877. #else
  878. if( bits == 224 )
  879. C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
  880. else
  881. #endif
  882. C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
  883. /* N = - ( C - N ) */
  884. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
  885. N->s = -1;
  886. cleanup:
  887. return( ret );
  888. }
  889. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  890. /*
  891. * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
  892. */
  893. static int ecp_mod_p224( mbedtls_mpi *N )
  894. {
  895. INIT( 224 );
  896. SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
  897. SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
  898. SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
  899. SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
  900. SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
  901. SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
  902. SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
  903. cleanup:
  904. return( ret );
  905. }
  906. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  907. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  908. /*
  909. * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
  910. */
  911. static int ecp_mod_p256( mbedtls_mpi *N )
  912. {
  913. INIT( 256 );
  914. ADD( 8 ); ADD( 9 );
  915. SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
  916. ADD( 9 ); ADD( 10 );
  917. SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
  918. ADD( 10 ); ADD( 11 );
  919. SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
  920. ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
  921. SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
  922. ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
  923. SUB( 9 ); SUB( 10 ); NEXT; // A4
  924. ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
  925. SUB( 10 ); SUB( 11 ); NEXT; // A5
  926. ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
  927. SUB( 8 ); SUB( 9 ); NEXT; // A6
  928. ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
  929. SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
  930. cleanup:
  931. return( ret );
  932. }
  933. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  934. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  935. /*
  936. * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
  937. */
  938. static int ecp_mod_p384( mbedtls_mpi *N )
  939. {
  940. INIT( 384 );
  941. ADD( 12 ); ADD( 21 ); ADD( 20 );
  942. SUB( 23 ); NEXT; // A0
  943. ADD( 13 ); ADD( 22 ); ADD( 23 );
  944. SUB( 12 ); SUB( 20 ); NEXT; // A2
  945. ADD( 14 ); ADD( 23 );
  946. SUB( 13 ); SUB( 21 ); NEXT; // A2
  947. ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
  948. SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
  949. ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
  950. SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
  951. ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
  952. SUB( 16 ); NEXT; // A5
  953. ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
  954. SUB( 17 ); NEXT; // A6
  955. ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
  956. SUB( 18 ); NEXT; // A7
  957. ADD( 20 ); ADD( 17 ); ADD( 16 );
  958. SUB( 19 ); NEXT; // A8
  959. ADD( 21 ); ADD( 18 ); ADD( 17 );
  960. SUB( 20 ); NEXT; // A9
  961. ADD( 22 ); ADD( 19 ); ADD( 18 );
  962. SUB( 21 ); NEXT; // A10
  963. ADD( 23 ); ADD( 20 ); ADD( 19 );
  964. SUB( 22 ); LAST; // A11
  965. cleanup:
  966. return( ret );
  967. }
  968. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  969. #undef A
  970. #undef LOAD32
  971. #undef STORE32
  972. #undef MAX32
  973. #undef INIT
  974. #undef NEXT
  975. #undef LAST
  976. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
  977. MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
  978. MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  979. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  980. /*
  981. * Here we have an actual Mersenne prime, so things are more straightforward.
  982. * However, chunks are aligned on a 'weird' boundary (521 bits).
  983. */
  984. /* Size of p521 in terms of mbedtls_mpi_uint */
  985. #define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
  986. /* Bits to keep in the most significant mbedtls_mpi_uint */
  987. #define P521_MASK 0x01FF
  988. /*
  989. * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
  990. * Write N as A1 + 2^521 A0, return A0 + A1
  991. */
  992. static int ecp_mod_p521( mbedtls_mpi *N )
  993. {
  994. int ret;
  995. size_t i;
  996. mbedtls_mpi M;
  997. mbedtls_mpi_uint Mp[P521_WIDTH + 1];
  998. /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
  999. * we need to hold bits 513 to 1056, which is 34 limbs, that is
  1000. * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
  1001. if( N->n < P521_WIDTH )
  1002. return( 0 );
  1003. /* M = A1 */
  1004. M.s = 1;
  1005. M.n = N->n - ( P521_WIDTH - 1 );
  1006. if( M.n > P521_WIDTH + 1 )
  1007. M.n = P521_WIDTH + 1;
  1008. M.p = Mp;
  1009. memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
  1010. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
  1011. /* N = A0 */
  1012. N->p[P521_WIDTH - 1] &= P521_MASK;
  1013. for( i = P521_WIDTH; i < N->n; i++ )
  1014. N->p[i] = 0;
  1015. /* N = A0 + A1 */
  1016. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
  1017. cleanup:
  1018. return( ret );
  1019. }
  1020. #undef P521_WIDTH
  1021. #undef P521_MASK
  1022. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  1023. #endif /* MBEDTLS_ECP_NIST_OPTIM */
  1024. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  1025. /* Size of p255 in terms of mbedtls_mpi_uint */
  1026. #define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
  1027. /*
  1028. * Fast quasi-reduction modulo p255 = 2^255 - 19
  1029. * Write N as A0 + 2^255 A1, return A0 + 19 * A1
  1030. */
  1031. static int ecp_mod_p255( mbedtls_mpi *N )
  1032. {
  1033. int ret;
  1034. size_t i;
  1035. mbedtls_mpi M;
  1036. mbedtls_mpi_uint Mp[P255_WIDTH + 2];
  1037. if( N->n < P255_WIDTH )
  1038. return( 0 );
  1039. /* M = A1 */
  1040. M.s = 1;
  1041. M.n = N->n - ( P255_WIDTH - 1 );
  1042. if( M.n > P255_WIDTH + 1 )
  1043. M.n = P255_WIDTH + 1;
  1044. M.p = Mp;
  1045. memset( Mp, 0, sizeof Mp );
  1046. memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
  1047. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
  1048. M.n++; /* Make room for multiplication by 19 */
  1049. /* N = A0 */
  1050. MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
  1051. for( i = P255_WIDTH; i < N->n; i++ )
  1052. N->p[i] = 0;
  1053. /* N = A0 + 19 * A1 */
  1054. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
  1055. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
  1056. cleanup:
  1057. return( ret );
  1058. }
  1059. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  1060. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
  1061. defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
  1062. defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  1063. /*
  1064. * Fast quasi-reduction modulo P = 2^s - R,
  1065. * with R about 33 bits, used by the Koblitz curves.
  1066. *
  1067. * Write N as A0 + 2^224 A1, return A0 + R * A1.
  1068. * Actually do two passes, since R is big.
  1069. */
  1070. #define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P
  1071. #define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R
  1072. static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
  1073. size_t adjust, size_t shift, mbedtls_mpi_uint mask )
  1074. {
  1075. int ret;
  1076. size_t i;
  1077. mbedtls_mpi M, R;
  1078. mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
  1079. if( N->n < p_limbs )
  1080. return( 0 );
  1081. /* Init R */
  1082. R.s = 1;
  1083. R.p = Rp;
  1084. R.n = P_KOBLITZ_R;
  1085. /* Common setup for M */
  1086. M.s = 1;
  1087. M.p = Mp;
  1088. /* M = A1 */
  1089. M.n = N->n - ( p_limbs - adjust );
  1090. if( M.n > p_limbs + adjust )
  1091. M.n = p_limbs + adjust;
  1092. memset( Mp, 0, sizeof Mp );
  1093. memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
  1094. if( shift != 0 )
  1095. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
  1096. M.n += R.n; /* Make room for multiplication by R */
  1097. /* N = A0 */
  1098. if( mask != 0 )
  1099. N->p[p_limbs - 1] &= mask;
  1100. for( i = p_limbs; i < N->n; i++ )
  1101. N->p[i] = 0;
  1102. /* N = A0 + R * A1 */
  1103. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
  1104. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
  1105. /* Second pass */
  1106. /* M = A1 */
  1107. M.n = N->n - ( p_limbs - adjust );
  1108. if( M.n > p_limbs + adjust )
  1109. M.n = p_limbs + adjust;
  1110. memset( Mp, 0, sizeof Mp );
  1111. memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
  1112. if( shift != 0 )
  1113. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
  1114. M.n += R.n; /* Make room for multiplication by R */
  1115. /* N = A0 */
  1116. if( mask != 0 )
  1117. N->p[p_limbs - 1] &= mask;
  1118. for( i = p_limbs; i < N->n; i++ )
  1119. N->p[i] = 0;
  1120. /* N = A0 + R * A1 */
  1121. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
  1122. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
  1123. cleanup:
  1124. return( ret );
  1125. }
  1126. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
  1127. MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
  1128. MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
  1129. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  1130. /*
  1131. * Fast quasi-reduction modulo p192k1 = 2^192 - R,
  1132. * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
  1133. */
  1134. static int ecp_mod_p192k1( mbedtls_mpi *N )
  1135. {
  1136. static mbedtls_mpi_uint Rp[] = {
  1137. BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
  1138. return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
  1139. }
  1140. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  1141. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  1142. /*
  1143. * Fast quasi-reduction modulo p224k1 = 2^224 - R,
  1144. * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
  1145. */
  1146. static int ecp_mod_p224k1( mbedtls_mpi *N )
  1147. {
  1148. static mbedtls_mpi_uint Rp[] = {
  1149. BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
  1150. #if defined(MBEDTLS_HAVE_INT64)
  1151. return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
  1152. #else
  1153. return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
  1154. #endif
  1155. }
  1156. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  1157. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  1158. /*
  1159. * Fast quasi-reduction modulo p256k1 = 2^256 - R,
  1160. * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
  1161. */
  1162. static int ecp_mod_p256k1( mbedtls_mpi *N )
  1163. {
  1164. static mbedtls_mpi_uint Rp[] = {
  1165. BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
  1166. return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
  1167. }
  1168. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  1169. #endif /* MBEDTLS_ECP_C */