nrf_spis.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. /**
  2. * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
  3. *
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without modification,
  7. * are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form, except as embedded into a Nordic
  13. * Semiconductor ASA integrated circuit in a product or a software update for
  14. * such product, must reproduce the above copyright notice, this list of
  15. * conditions and the following disclaimer in the documentation and/or other
  16. * materials provided with the distribution.
  17. *
  18. * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
  19. * contributors may be used to endorse or promote products derived from this
  20. * software without specific prior written permission.
  21. *
  22. * 4. This software, with or without modification, must only be used with a
  23. * Nordic Semiconductor ASA integrated circuit.
  24. *
  25. * 5. Any software provided in binary form under this license must not be reverse
  26. * engineered, decompiled, modified and/or disassembled.
  27. *
  28. * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
  29. * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
  31. * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  34. * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  35. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  37. * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. *
  39. */
  40. #ifndef NRF_SPIS_H__
  41. #define NRF_SPIS_H__
  42. #include <nrfx.h>
  43. #ifdef __cplusplus
  44. extern "C" {
  45. #endif
  46. /**
  47. * @defgroup nrf_spis_hal SPIS HAL
  48. * @{
  49. * @ingroup nrf_spis
  50. * @brief Hardware access layer for managing the SPIS peripheral.
  51. */
  52. /**
  53. * @brief This value can be used as a parameter for the @ref nrf_spis_pins_set
  54. * function to specify that a given SPI signal (SCK, MOSI, or MISO)
  55. * shall not be connected to a physical pin.
  56. */
  57. #define NRF_SPIS_PIN_NOT_CONNECTED 0xFFFFFFFF
  58. /**
  59. * @brief SPIS tasks.
  60. */
  61. typedef enum
  62. {
  63. /*lint -save -e30*/
  64. NRF_SPIS_TASK_ACQUIRE = offsetof(NRF_SPIS_Type, TASKS_ACQUIRE), ///< Acquire SPI semaphore.
  65. NRF_SPIS_TASK_RELEASE = offsetof(NRF_SPIS_Type, TASKS_RELEASE), ///< Release SPI semaphore, enabling the SPI slave to acquire it.
  66. /*lint -restore*/
  67. } nrf_spis_task_t;
  68. /**
  69. * @brief SPIS events.
  70. */
  71. typedef enum
  72. {
  73. /*lint -save -e30*/
  74. NRF_SPIS_EVENT_END = offsetof(NRF_SPIS_Type, EVENTS_END), ///< Granted transaction completed.
  75. NRF_SPIS_EVENT_ACQUIRED = offsetof(NRF_SPIS_Type, EVENTS_ACQUIRED) ///< Semaphore acquired.
  76. /*lint -restore*/
  77. } nrf_spis_event_t;
  78. /**
  79. * @brief SPIS shortcuts.
  80. */
  81. typedef enum
  82. {
  83. NRF_SPIS_SHORT_END_ACQUIRE = SPIS_SHORTS_END_ACQUIRE_Msk ///< Shortcut between END event and ACQUIRE task.
  84. } nrf_spis_short_mask_t;
  85. /**
  86. * @brief SPIS interrupts.
  87. */
  88. typedef enum
  89. {
  90. NRF_SPIS_INT_END_MASK = SPIS_INTENSET_END_Msk, ///< Interrupt on END event.
  91. NRF_SPIS_INT_ACQUIRED_MASK = SPIS_INTENSET_ACQUIRED_Msk ///< Interrupt on ACQUIRED event.
  92. } nrf_spis_int_mask_t;
  93. /**
  94. * @brief SPI modes.
  95. */
  96. typedef enum
  97. {
  98. NRF_SPIS_MODE_0, ///< SCK active high, sample on leading edge of clock.
  99. NRF_SPIS_MODE_1, ///< SCK active high, sample on trailing edge of clock.
  100. NRF_SPIS_MODE_2, ///< SCK active low, sample on leading edge of clock.
  101. NRF_SPIS_MODE_3 ///< SCK active low, sample on trailing edge of clock.
  102. } nrf_spis_mode_t;
  103. /**
  104. * @brief SPI bit orders.
  105. */
  106. typedef enum
  107. {
  108. NRF_SPIS_BIT_ORDER_MSB_FIRST = SPIS_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first.
  109. NRF_SPIS_BIT_ORDER_LSB_FIRST = SPIS_CONFIG_ORDER_LsbFirst ///< Least significant bit shifted out first.
  110. } nrf_spis_bit_order_t;
  111. /**
  112. * @brief SPI semaphore status.
  113. */
  114. typedef enum
  115. {
  116. NRF_SPIS_SEMSTAT_FREE = 0, ///< Semaphore is free.
  117. NRF_SPIS_SEMSTAT_CPU = 1, ///< Semaphore is assigned to the CPU.
  118. NRF_SPIS_SEMSTAT_SPIS = 2, ///< Semaphore is assigned to the SPI slave.
  119. NRF_SPIS_SEMSTAT_CPUPENDING = 3 ///< Semaphore is assigned to the SPI, but a handover to the CPU is pending.
  120. } nrf_spis_semstat_t;
  121. /**
  122. * @brief SPIS status.
  123. */
  124. typedef enum
  125. {
  126. NRF_SPIS_STATUS_OVERREAD = SPIS_STATUS_OVERREAD_Msk, ///< TX buffer over-read detected and prevented.
  127. NRF_SPIS_STATUS_OVERFLOW = SPIS_STATUS_OVERFLOW_Msk ///< RX buffer overflow detected and prevented.
  128. } nrf_spis_status_mask_t;
  129. /**
  130. * @brief Function for activating a specific SPIS task.
  131. *
  132. * @param[in] p_reg Pointer to the peripheral registers structure.
  133. * @param[in] spis_task Task to activate.
  134. */
  135. __STATIC_INLINE void nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,
  136. nrf_spis_task_t spis_task);
  137. /**
  138. * @brief Function for getting the address of a specific SPIS task register.
  139. *
  140. * @param[in] p_reg Pointer to the peripheral registers structure.
  141. * @param[in] spis_task Requested task.
  142. *
  143. * @return Address of the specified task register.
  144. */
  145. __STATIC_INLINE uint32_t nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,
  146. nrf_spis_task_t spis_task);
  147. /**
  148. * @brief Function for clearing a specific SPIS event.
  149. *
  150. * @param[in] p_reg Pointer to the peripheral registers structure.
  151. * @param[in] spis_event Event to clear.
  152. */
  153. __STATIC_INLINE void nrf_spis_event_clear(NRF_SPIS_Type * p_reg,
  154. nrf_spis_event_t spis_event);
  155. /**
  156. * @brief Function for checking the state of a specific SPIS event.
  157. *
  158. * @param[in] p_reg Pointer to the peripheral registers structure.
  159. * @param[in] spis_event Event to check.
  160. *
  161. * @retval true If the event is set.
  162. * @retval false If the event is not set.
  163. */
  164. __STATIC_INLINE bool nrf_spis_event_check(NRF_SPIS_Type const * p_reg,
  165. nrf_spis_event_t spis_event);
  166. /**
  167. * @brief Function for getting the address of a specific SPIS event register.
  168. *
  169. * @param[in] p_reg Pointer to the peripheral registers structure.
  170. * @param[in] spis_event Requested event.
  171. *
  172. * @return Address of the specified event register.
  173. */
  174. __STATIC_INLINE uint32_t nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,
  175. nrf_spis_event_t spis_event);
  176. /**
  177. * @brief Function for enabling specified shortcuts.
  178. *
  179. * @param[in] p_reg Pointer to the peripheral registers structure.
  180. * @param[in] spis_shorts_mask Shortcuts to enable.
  181. */
  182. __STATIC_INLINE void nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,
  183. uint32_t spis_shorts_mask);
  184. /**
  185. * @brief Function for disabling specified shortcuts.
  186. *
  187. * @param[in] p_reg Pointer to the peripheral registers structure.
  188. * @param[in] spis_shorts_mask Shortcuts to disable.
  189. */
  190. __STATIC_INLINE void nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,
  191. uint32_t spis_shorts_mask);
  192. /**
  193. * @brief Function for enabling specified interrupts.
  194. *
  195. * @param[in] p_reg Pointer to the peripheral registers structure.
  196. * @param[in] spis_int_mask Interrupts to enable.
  197. */
  198. __STATIC_INLINE void nrf_spis_int_enable(NRF_SPIS_Type * p_reg,
  199. uint32_t spis_int_mask);
  200. /**
  201. * @brief Function for disabling specified interrupts.
  202. *
  203. * @param[in] p_reg Pointer to the peripheral registers structure.
  204. * @param[in] spis_int_mask Interrupts to disable.
  205. */
  206. __STATIC_INLINE void nrf_spis_int_disable(NRF_SPIS_Type * p_reg,
  207. uint32_t spis_int_mask);
  208. /**
  209. * @brief Function for retrieving the state of a given interrupt.
  210. *
  211. * @param[in] p_reg Pointer to the peripheral registers structure.
  212. * @param[in] spis_int Interrupt to check.
  213. *
  214. * @retval true If the interrupt is enabled.
  215. * @retval false If the interrupt is not enabled.
  216. */
  217. __STATIC_INLINE bool nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg,
  218. nrf_spis_int_mask_t spis_int);
  219. /**
  220. * @brief Function for enabling the SPIS peripheral.
  221. *
  222. * @param[in] p_reg Pointer to the peripheral registers structure.
  223. */
  224. __STATIC_INLINE void nrf_spis_enable(NRF_SPIS_Type * p_reg);
  225. /**
  226. * @brief Function for disabling the SPIS peripheral.
  227. *
  228. * @param[in] p_reg Pointer to the peripheral registers structure.
  229. */
  230. __STATIC_INLINE void nrf_spis_disable(NRF_SPIS_Type * p_reg);
  231. /**
  232. * @brief Function for retrieving the SPIS semaphore status.
  233. *
  234. * @param[in] p_reg Pointer to the peripheral registers structure.
  235. *
  236. * @returns Current semaphore status.
  237. */
  238. __STATIC_INLINE nrf_spis_semstat_t nrf_spis_semaphore_status_get(NRF_SPIS_Type * p_reg);
  239. /**
  240. * @brief Function for retrieving the SPIS status.
  241. *
  242. * @param[in] p_reg Pointer to the peripheral registers structure.
  243. *
  244. * @returns Current SPIS status.
  245. */
  246. __STATIC_INLINE nrf_spis_status_mask_t nrf_spis_status_get(NRF_SPIS_Type * p_reg);
  247. /**
  248. * @brief Function for configuring SPIS pins.
  249. *
  250. * If a given signal is not needed, pass the @ref NRF_SPIS_PIN_NOT_CONNECTED
  251. * value instead of its pin number.
  252. *
  253. * @param[in] p_reg Pointer to the peripheral registers structure.
  254. * @param[in] sck_pin SCK pin number.
  255. * @param[in] mosi_pin MOSI pin number.
  256. * @param[in] miso_pin MISO pin number.
  257. * @param[in] csn_pin CSN pin number.
  258. */
  259. __STATIC_INLINE void nrf_spis_pins_set(NRF_SPIS_Type * p_reg,
  260. uint32_t sck_pin,
  261. uint32_t mosi_pin,
  262. uint32_t miso_pin,
  263. uint32_t csn_pin);
  264. /**
  265. * @brief Function for setting the transmit buffer.
  266. *
  267. * @param[in] p_reg Pointer to the peripheral registers structure.
  268. * @param[in] p_buffer Pointer to the buffer that contains the data to send.
  269. * @param[in] length Maximum number of data bytes to transmit.
  270. */
  271. __STATIC_INLINE void nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,
  272. uint8_t const * p_buffer,
  273. size_t length);
  274. /**
  275. * @brief Function for setting the receive buffer.
  276. *
  277. * @param[in] p_reg Pointer to the peripheral registers structure.
  278. * @param[in] p_buffer Pointer to the buffer for received data.
  279. * @param[in] length Maximum number of data bytes to receive.
  280. */
  281. __STATIC_INLINE void nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,
  282. uint8_t * p_buffer,
  283. size_t length);
  284. /**
  285. * @brief Function for getting the number of bytes transmitted
  286. * in the last granted transaction.
  287. *
  288. * @param[in] p_reg Pointer to the peripheral registers structure.
  289. *
  290. * @returns Number of bytes transmitted.
  291. */
  292. __STATIC_INLINE size_t nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg);
  293. /**
  294. * @brief Function for getting the number of bytes received
  295. * in the last granted transaction.
  296. *
  297. * @param[in] p_reg Pointer to the peripheral registers structure.
  298. *
  299. * @returns Number of bytes received.
  300. */
  301. __STATIC_INLINE size_t nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg);
  302. /**
  303. * @brief Function for setting the SPI configuration.
  304. *
  305. * @param[in] p_reg Pointer to the peripheral registers structure.
  306. * @param[in] spi_mode SPI mode.
  307. * @param[in] spi_bit_order SPI bit order.
  308. */
  309. __STATIC_INLINE void nrf_spis_configure(NRF_SPIS_Type * p_reg,
  310. nrf_spis_mode_t spi_mode,
  311. nrf_spis_bit_order_t spi_bit_order);
  312. /**
  313. * @brief Function for setting the default character.
  314. *
  315. * @param[in] p_reg Pointer to the peripheral registers structure.
  316. * @param[in] def Default character that is clocked out in case of
  317. * an overflow of the RXD buffer.
  318. */
  319. __STATIC_INLINE void nrf_spis_def_set(NRF_SPIS_Type * p_reg,
  320. uint8_t def);
  321. /**
  322. * @brief Function for setting the over-read character.
  323. *
  324. * @param[in] p_reg Pointer to the peripheral registers structure.
  325. * @param[in] orc Over-read character that is clocked out in case of
  326. * an over-read of the TXD buffer.
  327. */
  328. __STATIC_INLINE void nrf_spis_orc_set(NRF_SPIS_Type * p_reg,
  329. uint8_t orc);
  330. #ifndef SUPPRESS_INLINE_IMPLEMENTATION
  331. __STATIC_INLINE void nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,
  332. nrf_spis_task_t spis_task)
  333. {
  334. *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_task)) = 0x1UL;
  335. }
  336. __STATIC_INLINE uint32_t nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,
  337. nrf_spis_task_t spis_task)
  338. {
  339. return (uint32_t)p_reg + (uint32_t)spis_task;
  340. }
  341. __STATIC_INLINE void nrf_spis_event_clear(NRF_SPIS_Type * p_reg,
  342. nrf_spis_event_t spis_event)
  343. {
  344. *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event)) = 0x0UL;
  345. #if __CORTEX_M == 0x04
  346. volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event));
  347. (void)dummy;
  348. #endif
  349. }
  350. __STATIC_INLINE bool nrf_spis_event_check(NRF_SPIS_Type const * p_reg,
  351. nrf_spis_event_t spis_event)
  352. {
  353. return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event);
  354. }
  355. __STATIC_INLINE uint32_t nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,
  356. nrf_spis_event_t spis_event)
  357. {
  358. return (uint32_t)p_reg + (uint32_t)spis_event;
  359. }
  360. __STATIC_INLINE void nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,
  361. uint32_t spis_shorts_mask)
  362. {
  363. p_reg->SHORTS |= spis_shorts_mask;
  364. }
  365. __STATIC_INLINE void nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,
  366. uint32_t spis_shorts_mask)
  367. {
  368. p_reg->SHORTS &= ~(spis_shorts_mask);
  369. }
  370. __STATIC_INLINE void nrf_spis_int_enable(NRF_SPIS_Type * p_reg,
  371. uint32_t spis_int_mask)
  372. {
  373. p_reg->INTENSET = spis_int_mask;
  374. }
  375. __STATIC_INLINE void nrf_spis_int_disable(NRF_SPIS_Type * p_reg,
  376. uint32_t spis_int_mask)
  377. {
  378. p_reg->INTENCLR = spis_int_mask;
  379. }
  380. __STATIC_INLINE bool nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg,
  381. nrf_spis_int_mask_t spis_int)
  382. {
  383. return (bool)(p_reg->INTENSET & spis_int);
  384. }
  385. __STATIC_INLINE void nrf_spis_enable(NRF_SPIS_Type * p_reg)
  386. {
  387. p_reg->ENABLE = (SPIS_ENABLE_ENABLE_Enabled << SPIS_ENABLE_ENABLE_Pos);
  388. }
  389. __STATIC_INLINE void nrf_spis_disable(NRF_SPIS_Type * p_reg)
  390. {
  391. p_reg->ENABLE = (SPIS_ENABLE_ENABLE_Disabled << SPIS_ENABLE_ENABLE_Pos);
  392. }
  393. __STATIC_INLINE nrf_spis_semstat_t nrf_spis_semaphore_status_get(NRF_SPIS_Type * p_reg)
  394. {
  395. return (nrf_spis_semstat_t) ((p_reg->SEMSTAT & SPIS_SEMSTAT_SEMSTAT_Msk)
  396. >> SPIS_SEMSTAT_SEMSTAT_Pos);
  397. }
  398. __STATIC_INLINE nrf_spis_status_mask_t nrf_spis_status_get(NRF_SPIS_Type * p_reg)
  399. {
  400. return (nrf_spis_status_mask_t) p_reg->STATUS;
  401. }
  402. __STATIC_INLINE void nrf_spis_pins_set(NRF_SPIS_Type * p_reg,
  403. uint32_t sck_pin,
  404. uint32_t mosi_pin,
  405. uint32_t miso_pin,
  406. uint32_t csn_pin)
  407. {
  408. #if defined (NRF51)
  409. p_reg->PSELSCK = sck_pin;
  410. p_reg->PSELMOSI = mosi_pin;
  411. p_reg->PSELMISO = miso_pin;
  412. p_reg->PSELCSN = csn_pin;
  413. #else
  414. p_reg->PSEL.SCK = sck_pin;
  415. p_reg->PSEL.MOSI = mosi_pin;
  416. p_reg->PSEL.MISO = miso_pin;
  417. p_reg->PSEL.CSN = csn_pin;
  418. #endif
  419. }
  420. __STATIC_INLINE void nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,
  421. uint8_t const * p_buffer,
  422. size_t length)
  423. {
  424. #if defined (NRF51)
  425. p_reg->TXDPTR = (uint32_t)p_buffer;
  426. p_reg->MAXTX = length;
  427. #else
  428. p_reg->TXD.PTR = (uint32_t)p_buffer;
  429. p_reg->TXD.MAXCNT = length;
  430. #endif
  431. }
  432. __STATIC_INLINE void nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,
  433. uint8_t * p_buffer,
  434. size_t length)
  435. {
  436. #if defined (NRF51)
  437. p_reg->RXDPTR = (uint32_t)p_buffer;
  438. p_reg->MAXRX = length;
  439. #else
  440. p_reg->RXD.PTR = (uint32_t)p_buffer;
  441. p_reg->RXD.MAXCNT = length;
  442. #endif
  443. }
  444. __STATIC_INLINE size_t nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg)
  445. {
  446. #if defined (NRF51)
  447. return p_reg->AMOUNTTX;
  448. #else
  449. return p_reg->TXD.AMOUNT;
  450. #endif
  451. }
  452. __STATIC_INLINE size_t nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg)
  453. {
  454. #if defined (NRF51)
  455. return p_reg->AMOUNTRX;
  456. #else
  457. return p_reg->RXD.AMOUNT;
  458. #endif
  459. }
  460. __STATIC_INLINE void nrf_spis_configure(NRF_SPIS_Type * p_reg,
  461. nrf_spis_mode_t spi_mode,
  462. nrf_spis_bit_order_t spi_bit_order)
  463. {
  464. uint32_t config = (spi_bit_order == NRF_SPIS_BIT_ORDER_MSB_FIRST ?
  465. SPIS_CONFIG_ORDER_MsbFirst : SPIS_CONFIG_ORDER_LsbFirst);
  466. switch (spi_mode)
  467. {
  468. default:
  469. case NRF_SPIS_MODE_0:
  470. config |= (SPIS_CONFIG_CPOL_ActiveHigh << SPIS_CONFIG_CPOL_Pos) |
  471. (SPIS_CONFIG_CPHA_Leading << SPIS_CONFIG_CPHA_Pos);
  472. break;
  473. case NRF_SPIS_MODE_1:
  474. config |= (SPIS_CONFIG_CPOL_ActiveHigh << SPIS_CONFIG_CPOL_Pos) |
  475. (SPIS_CONFIG_CPHA_Trailing << SPIS_CONFIG_CPHA_Pos);
  476. break;
  477. case NRF_SPIS_MODE_2:
  478. config |= (SPIS_CONFIG_CPOL_ActiveLow << SPIS_CONFIG_CPOL_Pos) |
  479. (SPIS_CONFIG_CPHA_Leading << SPIS_CONFIG_CPHA_Pos);
  480. break;
  481. case NRF_SPIS_MODE_3:
  482. config |= (SPIS_CONFIG_CPOL_ActiveLow << SPIS_CONFIG_CPOL_Pos) |
  483. (SPIS_CONFIG_CPHA_Trailing << SPIS_CONFIG_CPHA_Pos);
  484. break;
  485. }
  486. p_reg->CONFIG = config;
  487. }
  488. __STATIC_INLINE void nrf_spis_orc_set(NRF_SPIS_Type * p_reg,
  489. uint8_t orc)
  490. {
  491. p_reg->ORC = orc;
  492. }
  493. __STATIC_INLINE void nrf_spis_def_set(NRF_SPIS_Type * p_reg,
  494. uint8_t def)
  495. {
  496. p_reg->DEF = def;
  497. }
  498. #endif // SUPPRESS_INLINE_IMPLEMENTATION
  499. /** @} */
  500. #ifdef __cplusplus
  501. }
  502. #endif
  503. #endif // NRF_SPIS_H__