/** * Copyright (c) 2015 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_TWIS_H__ #define NRF_TWIS_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_twis_hal TWIS HAL * @{ * @ingroup nrf_twis * @brief Hardware access layer for managing the Two Wire Interface Slave with EasyDMA * (TWIS) peripheral. */ /** @brief TWIS tasks. */ typedef enum { NRF_TWIS_TASK_STOP = offsetof(NRF_TWIS_Type, TASKS_STOP), /**< Stop TWIS transaction. */ NRF_TWIS_TASK_SUSPEND = offsetof(NRF_TWIS_Type, TASKS_SUSPEND), /**< Suspend TWIS transaction. */ NRF_TWIS_TASK_RESUME = offsetof(NRF_TWIS_Type, TASKS_RESUME), /**< Resume TWIS transaction. */ NRF_TWIS_TASK_PREPARERX = offsetof(NRF_TWIS_Type, TASKS_PREPARERX), /**< Prepare the TWIS slave to respond to a write command. */ NRF_TWIS_TASK_PREPARETX = offsetof(NRF_TWIS_Type, TASKS_PREPARETX) /**< Prepare the TWIS slave to respond to a read command. */ } nrf_twis_task_t; /** @brief TWIS events. */ typedef enum { NRF_TWIS_EVENT_STOPPED = offsetof(NRF_TWIS_Type, EVENTS_STOPPED), /**< TWIS stopped. */ NRF_TWIS_EVENT_ERROR = offsetof(NRF_TWIS_Type, EVENTS_ERROR), /**< TWIS error. */ NRF_TWIS_EVENT_RXSTARTED = offsetof(NRF_TWIS_Type, EVENTS_RXSTARTED), /**< Receive sequence started. */ NRF_TWIS_EVENT_TXSTARTED = offsetof(NRF_TWIS_Type, EVENTS_TXSTARTED), /**< Transmit sequence started. */ NRF_TWIS_EVENT_WRITE = offsetof(NRF_TWIS_Type, EVENTS_WRITE), /**< Write command received. */ NRF_TWIS_EVENT_READ = offsetof(NRF_TWIS_Type, EVENTS_READ) /**< Read command received. */ } nrf_twis_event_t; /** @brief TWIS shortcuts. */ typedef enum { NRF_TWIS_SHORT_WRITE_SUSPEND_MASK = TWIS_SHORTS_WRITE_SUSPEND_Msk, /**< Shortcut between WRITE event and SUSPEND task. */ NRF_TWIS_SHORT_READ_SUSPEND_MASK = TWIS_SHORTS_READ_SUSPEND_Msk, /**< Shortcut between READ event and SUSPEND task. */ } nrf_twis_short_mask_t; /** @brief TWIS interrupts. */ typedef enum { NRF_TWIS_INT_STOPPED_MASK = TWIS_INTEN_STOPPED_Msk, /**< Interrupt on STOPPED event. */ NRF_TWIS_INT_ERROR_MASK = TWIS_INTEN_ERROR_Msk, /**< Interrupt on ERROR event. */ NRF_TWIS_INT_RXSTARTED_MASK = TWIS_INTEN_RXSTARTED_Msk, /**< Interrupt on RXSTARTED event. */ NRF_TWIS_INT_TXSTARTED_MASK = TWIS_INTEN_TXSTARTED_Msk, /**< Interrupt on TXSTARTED event. */ NRF_TWIS_INT_WRITE_MASK = TWIS_INTEN_WRITE_Msk, /**< Interrupt on WRITE event. */ NRF_TWIS_INT_READ_MASK = TWIS_INTEN_READ_Msk, /**< Interrupt on READ event. */ } nrf_twis_int_mask_t; /** @brief TWIS error source. */ typedef enum { NRF_TWIS_ERROR_OVERFLOW = TWIS_ERRORSRC_OVERFLOW_Msk, /**< RX buffer overflow detected, and prevented. */ NRF_TWIS_ERROR_DATA_NACK = TWIS_ERRORSRC_DNACK_Msk, /**< NACK sent after receiving a data byte. */ NRF_TWIS_ERROR_OVERREAD = TWIS_ERRORSRC_OVERREAD_Msk /**< TX buffer over-read detected, and prevented. */ } nrf_twis_error_t; /** @brief TWIS address matching configuration. */ typedef enum { NRF_TWIS_CONFIG_ADDRESS0_MASK = TWIS_CONFIG_ADDRESS0_Msk, /**< Enable or disable address matching on ADDRESS[0]. */ NRF_TWIS_CONFIG_ADDRESS1_MASK = TWIS_CONFIG_ADDRESS1_Msk, /**< Enable or disable address matching on ADDRESS[1]. */ NRF_TWIS_CONFIG_ADDRESS01_MASK = TWIS_CONFIG_ADDRESS0_Msk | TWIS_CONFIG_ADDRESS1_Msk /**< Enable both address matching. */ } nrf_twis_config_addr_mask_t; /** * @brief Variable type to hold the amount of data for EasyDMA. * * Variable of the minimum size that can hold the amount of data to transfer. * * @note Defined to make it simple to change if EasyDMA is updated to support more data in * the future devices. */ typedef uint8_t nrf_twis_amount_t; /** * @brief Smallest variable type to hold the TWI address. * * Variable of the minimum size that can hold a single TWI address. * * @note Defined to make it simple to change if the new TWI supports for example * 10 bit addressing mode. */ typedef uint8_t nrf_twis_address_t; /** * @brief Function for activating the specified TWIS task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task to be activated. */ __STATIC_INLINE void nrf_twis_task_trigger(NRF_TWIS_Type * p_reg, nrf_twis_task_t task); /** * @brief Function for returning the address of the specified TWIS task register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task The specified task. * * @return Task address. */ __STATIC_INLINE uint32_t nrf_twis_task_address_get(NRF_TWIS_Type const * p_reg, nrf_twis_task_t task); /** * @brief Function for clearing the specified event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event The specified event. */ __STATIC_INLINE void nrf_twis_event_clear(NRF_TWIS_Type * p_reg, nrf_twis_event_t event); /** * @brief Function for retrieving the state of the TWIS event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ __STATIC_INLINE bool nrf_twis_event_check(NRF_TWIS_Type const * p_reg, nrf_twis_event_t event); /** * @brief Function for getting and clearing the state of the specified event. * * This function checks the state of the event and clears it. * * @param[in,out] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event. * * @retval true The event was set. * @retval false The event was not set. */ __STATIC_INLINE bool nrf_twis_event_get_and_clear(NRF_TWIS_Type * p_reg, nrf_twis_event_t event); /** * @brief Function for returning the address of the specified TWIS event register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event. * * @return Address. */ __STATIC_INLINE uint32_t nrf_twis_event_address_get(NRF_TWIS_Type const * p_reg, nrf_twis_event_t event); /** * @brief Function for setting a shortcut. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of shortcuts to be enabled. */ __STATIC_INLINE void nrf_twis_shorts_enable(NRF_TWIS_Type * p_reg, uint32_t mask); /** * @brief Function for clearing shortcuts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of shortcuts to be disabled. */ __STATIC_INLINE void nrf_twis_shorts_disable(NRF_TWIS_Type * p_reg, uint32_t mask); /** * @brief Function for getting the shorts mask. * * Function returns shorts register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Flags of currently enabled shortcuts */ __STATIC_INLINE uint32_t nrf_twis_shorts_get(NRF_TWIS_Type const * p_reg); /** * @brief Function for enabling the specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be enabled. */ __STATIC_INLINE void nrf_twis_int_enable(NRF_TWIS_Type * p_reg, uint32_t mask); /** * @brief Function for retrieving the state of the specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be checked. * * @retval true Any of the specified interrupts is enabled. * @retval false None of the specified interrupts is enabled. */ __STATIC_INLINE bool nrf_twis_int_enable_check(NRF_TWIS_Type const * p_reg, uint32_t mask); /** * @brief Function for disabling the specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be disabled. */ __STATIC_INLINE void nrf_twis_int_disable(NRF_TWIS_Type * p_reg, uint32_t mask); #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for setting the subscribe configuration for a given * TWIS task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to set the configuration. * @param[in] channel Channel through which to subscribe events. */ __STATIC_INLINE void nrf_twis_subscribe_set(NRF_TWIS_Type * p_reg, nrf_twis_task_t task, uint8_t channel); /** * @brief Function for clearing the subscribe configuration for a given * TWIS task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to clear the configuration. */ __STATIC_INLINE void nrf_twis_subscribe_clear(NRF_TWIS_Type * p_reg, nrf_twis_task_t task); /** * @brief Function for setting the publish configuration for a given * TWIS event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to set the configuration. * @param[in] channel Channel through which to publish the event. */ __STATIC_INLINE void nrf_twis_publish_set(NRF_TWIS_Type * p_reg, nrf_twis_event_t event, uint8_t channel); /** * @brief Function for clearing the publish configuration for a given * TWIS event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to clear the configuration. */ __STATIC_INLINE void nrf_twis_publish_clear(NRF_TWIS_Type * p_reg, nrf_twis_event_t event); #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for retrieving and clearing the TWIS error source. * * @attention Error sources are cleared after read. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Error source mask with values from @ref nrf_twis_error_t. */ __STATIC_INLINE uint32_t nrf_twis_error_source_get_and_clear(NRF_TWIS_Type * const p_reg); /** * @brief Function for getting information about which of the addresses matched. * * Function returns index in the address table * that points to the address that already matched. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Index of matched address. */ __STATIC_INLINE uint_fast8_t nrf_twis_match_get(NRF_TWIS_Type const * p_reg); /** * @brief Function for enabling TWIS. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ __STATIC_INLINE void nrf_twis_enable(NRF_TWIS_Type * p_reg); /** * @brief Function for disabling TWIS. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ __STATIC_INLINE void nrf_twis_disable(NRF_TWIS_Type * p_reg); /** * @brief Function for configuring TWIS pins. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] scl SCL pin number. * @param[in] sda SDA pin number. */ __STATIC_INLINE void nrf_twis_pins_set(NRF_TWIS_Type * p_reg, uint32_t scl, uint32_t sda); /** * @brief Function for setting the receive buffer. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_buf Pointer to the buffer for received data. * @param[in] length Maximum number of data bytes to receive. */ __STATIC_INLINE void nrf_twis_rx_buffer_set(NRF_TWIS_Type * p_reg, uint8_t * p_buf, size_t length); /** * @brief Function that prepares TWIS for receiving * * This function sets receive buffer and then sets NRF_TWIS_TASK_PREPARERX task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_buf Pointer to the buffer for received data. * @param[in] length Maximum number of data bytes to receive. */ __STATIC_INLINE void nrf_twis_rx_prepare(NRF_TWIS_Type * p_reg, uint8_t * p_buf, size_t length); /** * @brief Function for getting number of bytes received in the last transaction. * * @param[in] p_reg TWIS instance. * * @return Amount of bytes received. * */ __STATIC_INLINE size_t nrf_twis_rx_amount_get(NRF_TWIS_Type const * p_reg); /** * @brief Function for setting the transmit buffer. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_buf Pointer to the buffer with data to send. * @param[in] length Maximum number of data bytes to transmit. */ __STATIC_INLINE void nrf_twis_tx_buffer_set(NRF_TWIS_Type * p_reg, uint8_t const * p_buf, size_t length); /** * @brief Function for preparing TWIS for transmitting. * * This function sets transmit buffer and then sets NRF_TWIS_TASK_PREPARETX task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_buf Pointer to the buffer with data to send. * @param[in] length Maximum number of data bytes to transmit. */ __STATIC_INLINE void nrf_twis_tx_prepare(NRF_TWIS_Type * p_reg, uint8_t const * p_buf, size_t length); /** * @brief Function for getting the number of bytes transmitted in the last transaction. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Amount of bytes transmitted. */ __STATIC_INLINE size_t nrf_twis_tx_amount_get(NRF_TWIS_Type const * p_reg); /** * @brief Function for setting the slave address. * * Function sets the selected address for this TWI interface. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] n Index of address to be set. * @param[in] addr Addres to be set. * * @sa nrf_twis_config_address_set * @sa nrf_twis_config_address_get */ __STATIC_INLINE void nrf_twis_address_set(NRF_TWIS_Type * p_reg, uint_fast8_t n, nrf_twis_address_t addr); /** * @brief Function for retrieving configured slave address. * * Function gets the selected address for this TWI interface. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] n Index of address to get. * * @return Configured slave address. */ __STATIC_INLINE nrf_twis_address_t nrf_twis_address_get(NRF_TWIS_Type const * p_reg, uint_fast8_t n); /** * @brief Function for setting the device address configuration. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] addr_mask Mask of address indexes of what device should answer to. * * @sa nrf_twis_address_set */ __STATIC_INLINE void nrf_twis_config_address_set(NRF_TWIS_Type * p_reg, nrf_twis_config_addr_mask_t addr_mask); /** * @brief Function for retrieving the device address configuration. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Mask of address indexes of what device should answer to. */ __STATIC_INLINE nrf_twis_config_addr_mask_t nrf_twis_config_address_get( NRF_TWIS_Type const * p_reg); /** * @brief Function for setting the over-read character. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] orc Over-read character. Character clocked out in case of * over-read of the TXD buffer. */ __STATIC_INLINE void nrf_twis_orc_set(NRF_TWIS_Type * p_reg, uint8_t orc); /** * @brief Function for setting the over-read character. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Over-read character configured for selected instance. */ __STATIC_INLINE uint8_t nrf_twis_orc_get(NRF_TWIS_Type const * p_reg); /** @} */ /* End of nrf_twis_hal */ #ifndef SUPPRESS_INLINE_IMPLEMENTATION /* ------------------------------------------------------------------------------------------------ * Internal functions */ /** * @internal * @brief Internal function for getting task or event register address. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] offset Offset of the register from the beginning of the instance. * * @attention Offset must be modulo 4 value. In other case, hardware fault can occur. * @return Pointer to the register. */ __STATIC_INLINE volatile uint32_t* nrf_twis_getRegPtr(NRF_TWIS_Type const * p_reg, uint32_t offset) { return (volatile uint32_t*)((uint8_t *)p_reg + (uint32_t)offset); } /** * @internal * @brief Internal function for getting task/event register address - constant version. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] offset Offset of the register from the beginning of the instance. * * @attention Offset must be modulo 4 value. In other case, hardware fault can occur. * @return Pointer to the register. */ __STATIC_INLINE volatile const uint32_t* nrf_twis_getRegPtr_c(NRF_TWIS_Type const * p_reg, uint32_t offset) { return (volatile const uint32_t*)((uint8_t *)p_reg + (uint32_t)offset); } /* ------------------------------------------------------------------------------------------------ * Interface functions definitions */ __STATIC_INLINE void nrf_twis_task_trigger(NRF_TWIS_Type * p_reg, nrf_twis_task_t task) { *(nrf_twis_getRegPtr(p_reg, (uint32_t)task)) = 1UL; } __STATIC_INLINE uint32_t nrf_twis_task_address_get(NRF_TWIS_Type const * p_reg, nrf_twis_task_t task) { return (uint32_t)nrf_twis_getRegPtr_c(p_reg, (uint32_t)task); } __STATIC_INLINE void nrf_twis_event_clear(NRF_TWIS_Type * p_reg, nrf_twis_event_t event) { *(nrf_twis_getRegPtr(p_reg, (uint32_t)event)) = 0UL; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)); (void)dummy; #endif } __STATIC_INLINE bool nrf_twis_event_check(NRF_TWIS_Type const * p_reg, nrf_twis_event_t event) { return (bool)*nrf_twis_getRegPtr_c(p_reg, (uint32_t)event); } __STATIC_INLINE bool nrf_twis_event_get_and_clear(NRF_TWIS_Type * p_reg, nrf_twis_event_t event) { bool ret = nrf_twis_event_check(p_reg, event); if (ret) { nrf_twis_event_clear(p_reg, event); } return ret; } __STATIC_INLINE uint32_t nrf_twis_event_address_get(NRF_TWIS_Type const * p_reg, nrf_twis_event_t event) { return (uint32_t)nrf_twis_getRegPtr_c(p_reg, (uint32_t)event); } __STATIC_INLINE void nrf_twis_shorts_enable(NRF_TWIS_Type * p_reg, uint32_t mask) { p_reg->SHORTS |= mask; } __STATIC_INLINE void nrf_twis_shorts_disable(NRF_TWIS_Type * p_reg, uint32_t mask) { if (~0U == mask) { /* Optimized version for "disable all" */ p_reg->SHORTS = 0; } else { p_reg->SHORTS &= ~mask; } } __STATIC_INLINE uint32_t nrf_twis_shorts_get(NRF_TWIS_Type const * p_reg) { return p_reg->SHORTS; } __STATIC_INLINE void nrf_twis_int_enable(NRF_TWIS_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } __STATIC_INLINE bool nrf_twis_int_enable_check(NRF_TWIS_Type const * p_reg, uint32_t mask) { return (bool)(p_reg->INTENSET & mask); } __STATIC_INLINE void nrf_twis_int_disable(NRF_TWIS_Type * const p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } #if defined(DPPI_PRESENT) __STATIC_INLINE void nrf_twis_subscribe_set(NRF_TWIS_Type * p_reg, nrf_twis_task_t task, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = ((uint32_t)channel | TWIS_SUBSCRIBE_STOP_EN_Msk); } __STATIC_INLINE void nrf_twis_subscribe_clear(NRF_TWIS_Type * p_reg, nrf_twis_task_t task) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0; } __STATIC_INLINE void nrf_twis_publish_set(NRF_TWIS_Type * p_reg, nrf_twis_event_t event, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = ((uint32_t)channel | TWIS_PUBLISH_STOPPED_EN_Msk); } __STATIC_INLINE void nrf_twis_publish_clear(NRF_TWIS_Type * p_reg, nrf_twis_event_t event) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0; } #endif // defined(DPPI_PRESENT) __STATIC_INLINE uint32_t nrf_twis_error_source_get_and_clear(NRF_TWIS_Type * p_reg) { uint32_t ret = p_reg->ERRORSRC; p_reg->ERRORSRC = ret; return ret; } __STATIC_INLINE uint_fast8_t nrf_twis_match_get(NRF_TWIS_Type const * p_reg) { return (uint_fast8_t)p_reg->MATCH; } __STATIC_INLINE void nrf_twis_enable(NRF_TWIS_Type * p_reg) { p_reg->ENABLE = (TWIS_ENABLE_ENABLE_Enabled << TWIS_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_twis_disable(NRF_TWIS_Type * p_reg) { p_reg->ENABLE = (TWIS_ENABLE_ENABLE_Disabled << TWIS_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_twis_pins_set(NRF_TWIS_Type * p_reg, uint32_t scl, uint32_t sda) { p_reg->PSEL.SCL = scl; p_reg->PSEL.SDA = sda; } __STATIC_INLINE void nrf_twis_rx_buffer_set(NRF_TWIS_Type * p_reg, uint8_t * p_buf, size_t length) { p_reg->RXD.PTR = (uint32_t)p_buf; p_reg->RXD.MAXCNT = length; } __STATIC_INLINE void nrf_twis_rx_prepare(NRF_TWIS_Type * p_reg, uint8_t * p_buf, size_t length) { nrf_twis_rx_buffer_set(p_reg, p_buf, length); nrf_twis_task_trigger(p_reg, NRF_TWIS_TASK_PREPARERX); } __STATIC_INLINE size_t nrf_twis_rx_amount_get(NRF_TWIS_Type const * p_reg) { return p_reg->RXD.AMOUNT; } __STATIC_INLINE void nrf_twis_tx_buffer_set(NRF_TWIS_Type * p_reg, uint8_t const * p_buf, size_t length) { p_reg->TXD.PTR = (uint32_t)p_buf; p_reg->TXD.MAXCNT = length; } __STATIC_INLINE void nrf_twis_tx_prepare(NRF_TWIS_Type * p_reg, uint8_t const * p_buf, size_t length) { nrf_twis_tx_buffer_set(p_reg, p_buf, length); nrf_twis_task_trigger(p_reg, NRF_TWIS_TASK_PREPARETX); } __STATIC_INLINE size_t nrf_twis_tx_amount_get(NRF_TWIS_Type const * p_reg) { return p_reg->TXD.AMOUNT; } __STATIC_INLINE void nrf_twis_address_set(NRF_TWIS_Type * p_reg, uint_fast8_t n, nrf_twis_address_t addr) { p_reg->ADDRESS[n] = addr; } __STATIC_INLINE nrf_twis_address_t nrf_twis_address_get(NRF_TWIS_Type const * p_reg, uint_fast8_t n) { return (nrf_twis_address_t)p_reg->ADDRESS[n]; } __STATIC_INLINE void nrf_twis_config_address_set(NRF_TWIS_Type * p_reg, nrf_twis_config_addr_mask_t addr_mask) { /* This is the only configuration in TWIS - just write it without masking */ p_reg->CONFIG = addr_mask; } __STATIC_INLINE nrf_twis_config_addr_mask_t nrf_twis_config_address_get(NRF_TWIS_Type const * p_reg) { return (nrf_twis_config_addr_mask_t)(p_reg->CONFIG & TWIS_ADDRESS_ADDRESS_Msk); } __STATIC_INLINE void nrf_twis_orc_set(NRF_TWIS_Type * p_reg, uint8_t orc) { p_reg->ORC = orc; } __STATIC_INLINE uint8_t nrf_twis_orc_get(NRF_TWIS_Type const * p_reg) { return (uint8_t)p_reg->ORC; } #endif /* SUPPRESS_INLINE_IMPLEMENTATION */ #ifdef __cplusplus } #endif #endif /* NRF_TWIS_H__ */