/** * Copyright (c) 2013 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "ble_serialization.h" #include "nrf_error.h" #include "app_util.h" #include #include uint32_t ser_ble_cmd_rsp_status_code_enc(uint8_t op_code, uint32_t command_status, uint8_t * const p_buf, uint32_t * const p_buf_len) { SER_ASSERT_NOT_NULL(p_buf); SER_ASSERT_NOT_NULL(p_buf_len); uint32_t index = 0; SER_ASSERT_LENGTH_LEQ(SER_CMD_RSP_HEADER_SIZE, *p_buf_len); //Encode Op Code. p_buf[index++] = op_code; //Encode Status. index += uint32_encode(command_status, &(p_buf[index])); *p_buf_len = index; return NRF_SUCCESS; } uint32_t ser_ble_cmd_rsp_result_code_dec(uint8_t const * const p_buf, uint32_t * const p_pos, uint32_t packet_len, uint8_t op_code, uint32_t * const p_result_code) { SER_ASSERT_NOT_NULL(p_buf); SER_ASSERT_NOT_NULL(p_pos); SER_ASSERT_NOT_NULL(p_result_code); if (packet_len < SER_CMD_RSP_HEADER_SIZE) { return NRF_ERROR_DATA_SIZE; } if (p_buf[(*p_pos)] != op_code) { return NRF_ERROR_INVALID_DATA; } *p_result_code = uint32_decode(&(p_buf[(*p_pos) + SER_CMD_RSP_STATUS_CODE_POS])); *p_pos += SER_CMD_RSP_HEADER_SIZE; return NRF_SUCCESS; } uint32_t ser_ble_cmd_rsp_dec(uint8_t const * const p_buf, uint32_t packet_len, uint8_t op_code, uint32_t * const p_result_code) { uint32_t index = 0; uint32_t result_code = ser_ble_cmd_rsp_result_code_dec(p_buf, &index, packet_len, op_code, p_result_code); if (result_code != NRF_SUCCESS) { return result_code; } if (index != packet_len) { return NRF_ERROR_DATA_SIZE; } return NRF_SUCCESS; } uint32_t uint32_t_enc(void const * const p_field, uint8_t * const p_buf, uint32_t buf_len, uint32_t * const p_index) { SER_ASSERT_NOT_NULL(p_buf); SER_ASSERT_NOT_NULL(p_field); SER_ASSERT_NOT_NULL(p_index); uint32_t * p_uint32 = (uint32_t *)p_field; SER_ASSERT_LENGTH_LEQ(4, buf_len - *p_index); *p_index += uint32_encode(*p_uint32, &p_buf[*p_index]); return NRF_SUCCESS; } uint32_t uint32_t_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, void * p_field) { SER_ASSERT_NOT_NULL(p_buf); SER_ASSERT_NOT_NULL(p_index); SER_ASSERT_NOT_NULL(p_field); uint32_t * p_uint32 = (uint32_t *)p_field; SER_ASSERT_LENGTH_LEQ(4, ((int32_t)buf_len - *p_index)); *p_uint32 = uint32_decode(&p_buf[*p_index]); *p_index += 4; return NRF_SUCCESS; } uint32_t uint16_t_enc(const void * const p_field, uint8_t * const p_buf, uint32_t buf_len, uint32_t * const p_index) { uint16_t * p_u16 = (uint16_t *)p_field; SER_ASSERT_LENGTH_LEQ(2, buf_len - *p_index); *p_index += uint16_encode(*p_u16, &p_buf[*p_index]); return NRF_SUCCESS; } uint32_t uint16_t_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, void * p_field) { uint16_t * p_u16 = (uint16_t *)p_field; SER_ASSERT_LENGTH_LEQ(2, ((int32_t)buf_len - *p_index)); *p_u16 = uint16_decode(&p_buf[*p_index]); *p_index += 2; return NRF_SUCCESS; } void uint16_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const index, uint16_t * const value) { SER_ASSERT_VOID_RETURN(*index + 2 <= buf_len); *value = uint16_decode(&p_buf[*index]); *index += 2; } uint32_t uint8_t_enc(const void * const p_field, uint8_t * const p_buf, uint32_t buf_len, uint32_t * const p_index) { SER_ASSERT_LENGTH_LEQ(1, buf_len - *p_index); uint8_t * p_u8 = (uint8_t *)p_field; p_buf[*p_index] = *p_u8; *p_index += 1; return NRF_SUCCESS; } uint32_t uint8_t_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, void * p_field) { uint8_t * p_u8 = (uint8_t *)p_field; SER_ASSERT_LENGTH_LEQ(1, ((int32_t)buf_len - *p_index)); *p_u8 = p_buf[*p_index]; *p_index += 1; return NRF_SUCCESS; } void uint8_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const index, uint8_t * const value) { SER_ASSERT_VOID_RETURN(*index + 1 <= buf_len); *value = p_buf[*index]; *index += 1; } void int8_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const index, int8_t * const value) { SER_ASSERT_VOID_RETURN(*index + 1 <= buf_len); *value = p_buf[*index]; *index += 1; } uint32_t len8data_enc(uint8_t const * const p_data, uint8_t const dlen, uint8_t * const p_buf, uint32_t buf_len, uint32_t * const p_index) { uint32_t err_code = NRF_SUCCESS; err_code = uint8_t_enc(&dlen, p_buf, buf_len, p_index); SER_ASSERT(err_code == NRF_SUCCESS, err_code); err_code = buf_enc(p_data, dlen, p_buf, buf_len, p_index); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t len8data_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, uint8_t * * const pp_data, uint8_t * const p_len) { uint32_t err_code = NRF_SUCCESS; uint16_t out_buf_len = *p_len; err_code = uint8_t_dec(p_buf, buf_len, p_index, p_len); SER_ASSERT(err_code == NRF_SUCCESS, err_code); err_code = buf_dec(p_buf, buf_len, p_index, pp_data, out_buf_len, *p_len); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t len16data_enc(uint8_t const * const p_data, uint16_t const dlen, uint8_t * const p_buf, uint32_t buf_len, uint32_t * const p_index) { uint32_t err_code = NRF_SUCCESS; err_code = uint16_t_enc(&dlen, p_buf, buf_len, p_index); SER_ASSERT(err_code == NRF_SUCCESS, err_code); err_code = buf_enc(p_data, dlen, p_buf, buf_len, p_index); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t len16data_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, uint8_t * * const pp_data, uint16_t * const p_dlen) { uint32_t err_code = NRF_SUCCESS; uint16_t out_buf_len = *p_dlen; err_code = uint16_t_dec(p_buf, buf_len, p_index, p_dlen); SER_ASSERT(err_code == NRF_SUCCESS, err_code); err_code = buf_dec(p_buf, buf_len, p_index, pp_data, out_buf_len, *p_dlen); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t count16_cond_data16_enc(uint16_t const * const p_data, uint16_t const count, uint8_t * const p_buf, uint32_t buf_len, uint32_t * const p_index) { uint32_t i = 0; SER_ASSERT_LENGTH_LEQ(3, ((int32_t)buf_len - *p_index)); *p_index += uint16_encode(count, &p_buf[*p_index]); if (p_data) { SER_ASSERT_LENGTH_LEQ((int32_t)(2 * count + 1), ((int32_t)buf_len - (int32_t) * p_index)); p_buf[*p_index] = SER_FIELD_PRESENT; *p_index += 1; //memcpy may fail in case of Endianness difference between application and connectivity processor for (i = 0; i < count; i++) { *p_index += uint16_encode(p_data[i], &p_buf[*p_index]); } } else { SER_ASSERT_LENGTH_LEQ((1), ((int32_t)buf_len - *p_index)); p_buf[*p_index] = SER_FIELD_NOT_PRESENT; *p_index += 1; } return NRF_SUCCESS; } uint32_t count16_cond_data16_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, uint16_t * * const pp_data, uint16_t * const p_count) { uint16_t count = 0; uint8_t is_present = 0; uint16_t i; SER_ASSERT_NOT_NULL(p_count); SER_ASSERT_NOT_NULL(pp_data); SER_ASSERT_NOT_NULL(*pp_data); SER_ASSERT_LENGTH_LEQ(3, ((int32_t)buf_len - (*p_index))); uint16_dec(p_buf, buf_len, p_index, &count); if (count > *p_count) { return NRF_ERROR_DATA_SIZE; } SER_ASSERT_LENGTH_LEQ(count, *p_count); uint8_dec(p_buf, buf_len, p_index, &is_present); if (!is_present) { *p_count = count; *pp_data = NULL; return NRF_SUCCESS; } else { for (i = 0; i < count; i++ ) { uint16_dec(p_buf, buf_len, p_index, &((&(**pp_data))[i]) ); } *p_count = i; } return NRF_SUCCESS; } uint32_t cond_len16_cond_data_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, uint8_t * * const pp_data, uint16_t * * const pp_len) { SER_ASSERT_NOT_NULL(pp_len); SER_ASSERT_NOT_NULL(*pp_len); SER_ASSERT_NOT_NULL(pp_data); SER_ASSERT_NOT_NULL(*pp_data); SER_ASSERT_LENGTH_LEQ(2, ((int32_t)buf_len - (*p_index))); uint8_t is_present = 0; uint8_dec(p_buf, buf_len, p_index, &is_present); if (!is_present) { *pp_len = NULL; //if length field is not present (*p_index)++; //then data can not be present *pp_data = NULL; return NRF_SUCCESS; } else { return len16data_dec(p_buf, buf_len, p_index, pp_data, *pp_len); } } uint32_t op_status_enc(uint8_t op_code, uint32_t return_code, uint8_t * const p_buff, uint32_t * const p_buff_len, uint32_t * const p_index) { SER_ASSERT_NOT_NULL(p_buff); SER_ASSERT_NOT_NULL(p_buff_len); SER_ASSERT_NOT_NULL(p_index); SER_ASSERT_LENGTH_LEQ(SER_CMD_RSP_HEADER_SIZE, *p_buff_len - *p_index); //Encode Op Code. p_buff[(*p_index)++] = op_code; //Encode Status. *p_index += uint32_encode(return_code, &(p_buff[*p_index])); //update size of used buffer *p_buff_len = *p_index; return NRF_SUCCESS; } uint32_t op_status_cond_uint16_enc(uint8_t op_code, uint32_t return_code, uint16_t value, uint8_t * const p_buff, uint32_t * const p_buff_len, uint32_t * const p_index) { uint32_t status_code; uint32_t init_buff_len = *p_buff_len; status_code = op_status_enc(op_code, return_code, p_buff, p_buff_len, p_index); SER_ASSERT(status_code == NRF_SUCCESS, status_code); if (return_code == NRF_SUCCESS) //Add 16bit value when return_code is a success { *p_buff_len = init_buff_len; //restore original value - it has been modified by op_status_enc status_code = uint16_t_enc(&value, p_buff, *p_buff_len, p_index); *p_buff_len = *p_index; SER_ASSERT(status_code == NRF_SUCCESS, status_code); } return status_code; } uint32_t buf_enc(uint8_t const * const p_data, uint16_t const dlen, uint8_t * const p_buf, uint32_t buf_len, uint32_t * const p_index) { uint32_t err_code = NRF_SUCCESS; uint8_t is_present = (p_data == NULL) ? SER_FIELD_NOT_PRESENT : SER_FIELD_PRESENT; err_code = uint8_t_enc(&is_present, p_buf, buf_len, p_index); SER_ASSERT(err_code == NRF_SUCCESS, err_code); if (p_data) { SER_ASSERT_LENGTH_LEQ(dlen, ((int32_t)buf_len - *p_index)); memcpy(&p_buf[*p_index], p_data, dlen); *p_index += dlen; } return err_code; } uint32_t buf_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, uint8_t * * const pp_data, uint16_t data_len, uint16_t dlen) { uint8_t is_present = 0; SER_ASSERT_LENGTH_LEQ(1, ((int32_t)buf_len - *p_index)); uint8_dec(p_buf, buf_len, p_index, &is_present); if (is_present == SER_FIELD_PRESENT) { SER_ASSERT_NOT_NULL(pp_data); SER_ASSERT_NOT_NULL(*pp_data); SER_ASSERT_LENGTH_LEQ(dlen, data_len); SER_ASSERT_LENGTH_LEQ(dlen, ((int32_t)buf_len - *p_index)); memcpy(*pp_data, &p_buf[*p_index], dlen); *p_index += dlen; } else { if (pp_data) { *pp_data = NULL; } } return NRF_SUCCESS; } uint32_t uint8_vector_enc(uint8_t const * const p_data, uint16_t const dlen, uint8_t * const p_buf, uint32_t buf_len, uint32_t * const p_index) { SER_ASSERT_NOT_NULL(p_data); SER_ASSERT_NOT_NULL(p_buf); SER_ASSERT_NOT_NULL(p_index); SER_ASSERT_LENGTH_LEQ(dlen, ((int32_t)buf_len - *p_index)); memcpy(&p_buf[*p_index], p_data, dlen); *p_index += dlen; return NRF_SUCCESS; } uint32_t uint8_vector_dec(uint8_t const * const p_buf, uint32_t buf_len, uint32_t * const p_index, uint8_t * const p_data, uint16_t dlen) { SER_ASSERT_NOT_NULL(p_data); SER_ASSERT_LENGTH_LEQ(dlen, ((int32_t)buf_len - *p_index)); memcpy(p_data, &p_buf[*p_index], dlen); *p_index += dlen; return NRF_SUCCESS; }