/** * Copyright (c) 2016 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef __NRF_ESB_H #define __NRF_ESB_H #include #include #include "nrf.h" #include "app_util.h" #ifdef __cplusplus extern "C" { #endif /** @defgroup nrf_esb Enhanced ShockBurst * @{ * @ingroup proprietary_api * * @brief Enhanced ShockBurst (ESB) is a basic protocol that supports two-way data * packet communication including packet buffering, packet acknowledgment, * and automatic retransmission of lost packets. */ /** @name Debug pins * @{ * @brief If NRF_ESB_DEBUG is defined, these GPIO pins can be used for debug timing. */ #ifndef NRF52840_XXAA #define DEBUGPIN1 12 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every radio interrupt. #define DEBUGPIN2 13 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every NRF_RADIO->EVENTS_END. #define DEBUGPIN3 14 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every NRF_RADIO->EVENTS_DISABLED. #define DEBUGPIN4 15 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set when the radio is set to start transmission. #else #define DEBUGPIN1 24 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every radio interrupt. #define DEBUGPIN2 25 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every NRF_RADIO->EVENTS_END. #define DEBUGPIN3 26 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every NRF_RADIO->EVENTS_DISABLED. #define DEBUGPIN4 27 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set when the radio is set to start transmission. #endif #ifdef NRF_ESB_DEBUG #define DEBUG_PIN_SET(a) (NRF_GPIO->OUTSET = (1 << (a))) //!< Used internally to set debug pins. #define DEBUG_PIN_CLR(a) (NRF_GPIO->OUTCLR = (1 << (a))) //!< Used internally to clear debug pins. #else #define DEBUG_PIN_SET(a) //!< Used internally to set debug pins. #define DEBUG_PIN_CLR(a) //!< Used internally to clear debug pins. #endif /** @} */ // Hardcoded parameters - change if necessary #ifndef NRF_ESB_MAX_PAYLOAD_LENGTH #define NRF_ESB_MAX_PAYLOAD_LENGTH 32 //!< The maximum size of the payload. Valid values are 1 to 252. #endif #define NRF_ESB_TX_FIFO_SIZE 8 //!< The size of the transmission first-in, first-out buffer. #define NRF_ESB_RX_FIFO_SIZE 8 //!< The size of the reception first-in, first-out buffer. // 252 is the largest possible payload size according to the nRF5 architecture. STATIC_ASSERT(NRF_ESB_MAX_PAYLOAD_LENGTH <= 252); #define NRF_ESB_SYS_TIMER NRF_TIMER2 //!< The timer that is used by the module. #define NRF_ESB_SYS_TIMER_IRQ_Handler TIMER2_IRQHandler //!< The handler that is used by @ref NRF_ESB_SYS_TIMER. #define NRF_ESB_PPI_TIMER_START 10 //!< The PPI channel used for starting the timer. #define NRF_ESB_PPI_TIMER_STOP 11 //!< The PPI channel used for stopping the timer. #define NRF_ESB_PPI_RX_TIMEOUT 12 //!< The PPI channel used for RX time-out. #define NRF_ESB_PPI_TX_START 13 //!< The PPI channel used for starting TX. #ifndef NRF_ESB_PIPE_COUNT #define NRF_ESB_PIPE_COUNT 8 //!< The maximum number of pipes allowed in the API, can be used if you need to restrict the number of pipes used. Must be 8 or lower because of architectural limitations. #endif STATIC_ASSERT(NRF_ESB_PIPE_COUNT <= 8); /**@cond NO_DOXYGEN */ #ifdef NRF52832_XXAA // nRF52 address fix timer and PPI defines #define NRF_ESB_PPI_BUGFIX1 9 #define NRF_ESB_PPI_BUGFIX2 8 #define NRF_ESB_PPI_BUGFIX3 7 #define NRF_ESB_BUGFIX_TIMER NRF_TIMER3 #define NRF_ESB_BUGFIX_TIMER_IRQn TIMER3_IRQn #define NRF_ESB_BUGFIX_TIMER_IRQHandler TIMER3_IRQHandler #endif /** @endcond */ // Interrupt flags #define NRF_ESB_INT_TX_SUCCESS_MSK 0x01 //!< The flag used to indicate a success since the last event. #define NRF_ESB_INT_TX_FAILED_MSK 0x02 //!< The flag used to indicate a failure since the last event. #define NRF_ESB_INT_RX_DR_MSK 0x04 //!< The flag used to indicate that a packet was received since the last event. #define NRF_ESB_PID_RESET_VALUE 0xFF //!< Invalid PID value that is guaranteed to not collide with any valid PID value. #define NRF_ESB_PID_MAX 3 //!< The maximum value for PID. #define NRF_ESB_CRC_RESET_VALUE 0xFFFF //!< The CRC reset value. #define ESB_EVT_IRQ SWI0_IRQn //!< The ESB event IRQ number when running on an nRF5 device. #define ESB_EVT_IRQHandler SWI0_IRQHandler //!< The handler for @ref ESB_EVT_IRQ when running on an nRF5 device. #if defined(NRF52_SERIES) #define ESB_IRQ_PRIORITY_MSK 0x07 //!< The mask used to enforce a valid IRQ priority. #else #define ESB_IRQ_PRIORITY_MSK 0x03 //!< The mask used to enforce a valid IRQ priority. #endif /** @brief Default address configuration for ESB. * @details Roughly equal to the nRF24Lxx default (except for the number of pipes, because more pipes are supported). */ #define NRF_ESB_ADDR_DEFAULT \ { \ .base_addr_p0 = { 0xE7, 0xE7, 0xE7, 0xE7 }, \ .base_addr_p1 = { 0xC2, 0xC2, 0xC2, 0xC2 }, \ .pipe_prefixes = { 0xE7, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8 }, \ .addr_length = 5, \ .num_pipes = NRF_ESB_PIPE_COUNT, \ .rf_channel = 2, \ .rx_pipes_enabled = 0xFF \ } /** @brief Default radio parameters. * @details Roughly equal to the nRF24Lxx default parameters (except for CRC, which is set to 16 bit, and protocol, which is set to DPL). */ #define NRF_ESB_DEFAULT_CONFIG {.protocol = NRF_ESB_PROTOCOL_ESB_DPL, \ .mode = NRF_ESB_MODE_PTX, \ .event_handler = 0, \ .bitrate = NRF_ESB_BITRATE_2MBPS, \ .crc = NRF_ESB_CRC_16BIT, \ .tx_output_power = NRF_ESB_TX_POWER_0DBM, \ .retransmit_delay = 250, \ .retransmit_count = 3, \ .tx_mode = NRF_ESB_TXMODE_AUTO, \ .radio_irq_priority = 1, \ .event_irq_priority = 2, \ .payload_length = 32, \ .selective_auto_ack = false \ } /** @brief Default legacy radio parameters. Identical to the nRF24Lxx defaults. */ #define NRF_ESB_LEGACY_CONFIG {.protocol = NRF_ESB_PROTOCOL_ESB, \ .mode = NRF_ESB_MODE_PTX, \ .event_handler = 0, \ .bitrate = NRF_ESB_BITRATE_2MBPS, \ .crc = NRF_ESB_CRC_8BIT, \ .tx_output_power = NRF_ESB_TX_POWER_0DBM, \ .retransmit_delay = 600, \ .retransmit_count = 3, \ .tx_mode = NRF_ESB_TXMODE_AUTO, \ .radio_irq_priority = 1, \ .event_irq_priority = 2, \ .payload_length = 32, \ .selective_auto_ack = false \ } /** @brief Macro to create an initializer for a TX data packet. * * @details This macro generates an initializer. Using the initializer is more efficient * than setting the individual parameters dynamically. * * @param[in] _pipe The pipe to use for the data packet. * @param[in] ... Comma separated list of character data to put in the TX buffer. * Supported values consist of 1 to 63 characters. * * @return Initializer that sets up the pipe, length, and byte array for content of the TX data. */ #define NRF_ESB_CREATE_PAYLOAD(_pipe, ...) \ {.pipe = _pipe, .length = NUM_VA_ARGS(__VA_ARGS__), .data = {__VA_ARGS__}}; \ STATIC_ASSERT(NUM_VA_ARGS(__VA_ARGS__) > 0 && NUM_VA_ARGS(__VA_ARGS__) <= 63) /**@brief Enhanced ShockBurst protocols. */ typedef enum { NRF_ESB_PROTOCOL_ESB, /**< Enhanced ShockBurst with fixed payload length. */ NRF_ESB_PROTOCOL_ESB_DPL /**< Enhanced ShockBurst with dynamic payload length. */ } nrf_esb_protocol_t; /**@brief Enhanced ShockBurst modes. */ typedef enum { NRF_ESB_MODE_PTX, /**< Primary transmitter mode. */ NRF_ESB_MODE_PRX /**< Primary receiver mode. */ } nrf_esb_mode_t; /**@brief Enhanced ShockBurst bitrate modes. */ typedef enum { NRF_ESB_BITRATE_2MBPS = RADIO_MODE_MODE_Nrf_2Mbit, /**< 2 Mb radio mode. */ NRF_ESB_BITRATE_1MBPS = RADIO_MODE_MODE_Nrf_1Mbit, /**< 1 Mb radio mode. */ #if defined(RADIO_MODE_MODE_Nrf_250Kbit) NRF_ESB_BITRATE_250KBPS = RADIO_MODE_MODE_Nrf_250Kbit, /**< 250 Kb radio mode. */ #endif //!( defined(NRF52840_XXAA) || defined(NRF52810_XXAA) || defined(NRF52811_XXAA) ) NRF_ESB_BITRATE_1MBPS_BLE = RADIO_MODE_MODE_Ble_1Mbit, /**< 1 Mb radio mode using @e Bluetooth low energy radio parameters. */ #if defined(RADIO_MODE_MODE_Ble_2Mbit) NRF_ESB_BITRATE_2MBPS_BLE = RADIO_MODE_MODE_Ble_2Mbit /**< 2 Mb radio mode using @e Bluetooth low energy radio parameters. */ #endif } nrf_esb_bitrate_t; /**@brief Enhanced ShockBurst CRC modes. */ typedef enum { NRF_ESB_CRC_16BIT = RADIO_CRCCNF_LEN_Two, /**< Use two-byte CRC. */ NRF_ESB_CRC_8BIT = RADIO_CRCCNF_LEN_One, /**< Use one-byte CRC. */ NRF_ESB_CRC_OFF = RADIO_CRCCNF_LEN_Disabled /**< Disable CRC. */ } nrf_esb_crc_t; /**@brief Enhanced ShockBurst radio transmission power modes. */ typedef enum { #if defined(RADIO_TXPOWER_TXPOWER_Pos8dBm) NRF_ESB_TX_POWER_8DBM = RADIO_TXPOWER_TXPOWER_Pos8dBm, /**< 8 dBm radio transmit power. */ #endif #if defined(RADIO_TXPOWER_TXPOWER_Pos7dBm) NRF_ESB_TX_POWER_7DBM = RADIO_TXPOWER_TXPOWER_Pos7dBm, /**< 7 dBm radio transmit power. */ #endif #if defined(RADIO_TXPOWER_TXPOWER_Pos6dBm) NRF_ESB_TX_POWER_6DBM = RADIO_TXPOWER_TXPOWER_Pos6dBm, /**< 6 dBm radio transmit power. */ #endif #if defined(RADIO_TXPOWER_TXPOWER_Pos5dBm) NRF_ESB_TX_POWER_5DBM = RADIO_TXPOWER_TXPOWER_Pos5dBm, /**< 5 dBm radio transmit power. */ #endif NRF_ESB_TX_POWER_4DBM = RADIO_TXPOWER_TXPOWER_Pos4dBm, /**< 4 dBm radio transmit power. */ #if defined(RADIO_TXPOWER_TXPOWER_Pos3dBm) NRF_ESB_TX_POWER_3DBM = RADIO_TXPOWER_TXPOWER_Pos3dBm, /**< 3 dBm radio transmit power. */ #endif #if defined(RADIO_TXPOWER_TXPOWER_Pos2dBm) NRF_ESB_TX_POWER_2DBM = RADIO_TXPOWER_TXPOWER_Pos2dBm, /**< 2 dBm radio transmit power. */ #endif NRF_ESB_TX_POWER_0DBM = RADIO_TXPOWER_TXPOWER_0dBm, /**< 0 dBm radio transmit power. */ NRF_ESB_TX_POWER_NEG4DBM = RADIO_TXPOWER_TXPOWER_Neg4dBm, /**< -4 dBm radio transmit power. */ NRF_ESB_TX_POWER_NEG8DBM = RADIO_TXPOWER_TXPOWER_Neg8dBm, /**< -8 dBm radio transmit power. */ NRF_ESB_TX_POWER_NEG12DBM = RADIO_TXPOWER_TXPOWER_Neg12dBm, /**< -12 dBm radio transmit power. */ NRF_ESB_TX_POWER_NEG16DBM = RADIO_TXPOWER_TXPOWER_Neg16dBm, /**< -16 dBm radio transmit power. */ NRF_ESB_TX_POWER_NEG20DBM = RADIO_TXPOWER_TXPOWER_Neg20dBm, /**< -20 dBm radio transmit power. */ NRF_ESB_TX_POWER_NEG30DBM = RADIO_TXPOWER_TXPOWER_Neg30dBm, /**< -30 dBm radio transmit power. */ NRF_ESB_TX_POWER_NEG40DBM = RADIO_TXPOWER_TXPOWER_Neg40dBm /**< -40 dBm radio transmit power. */ } nrf_esb_tx_power_t; /**@brief Enhanced ShockBurst transmission modes. */ typedef enum { NRF_ESB_TXMODE_AUTO, /**< Automatic TX mode: When the TX FIFO contains packets and the radio is idle, packets are sent automatically. */ NRF_ESB_TXMODE_MANUAL, /**< Manual TX mode: Packets are not sent until @ref nrf_esb_start_tx is called. This mode can be used to ensure consistent packet timing. */ NRF_ESB_TXMODE_MANUAL_START /**< Manual start TX mode: Packets are not sent until @ref nrf_esb_start_tx is called. Then, transmission continues automatically until the TX FIFO is empty. */ } nrf_esb_tx_mode_t; /**@brief Enhanced ShockBurst event IDs used to indicate the type of the event. */ typedef enum { NRF_ESB_EVENT_TX_SUCCESS, /**< Event triggered on TX success. */ NRF_ESB_EVENT_TX_FAILED, /**< Event triggered on TX failure. */ NRF_ESB_EVENT_RX_RECEIVED /**< Event triggered on RX received. */ } nrf_esb_evt_id_t; /**@brief Enhanced ShockBurst payload. * * @details The payload is used both for transmissions and for acknowledging a * received packet with a payload. */ typedef struct { uint8_t length; //!< Length of the packet (maximum value is @ref NRF_ESB_MAX_PAYLOAD_LENGTH). uint8_t pipe; //!< Pipe used for this payload. int8_t rssi; //!< RSSI for the received packet. uint8_t noack; //!< Flag indicating that this packet will not be acknowledgement. Flag is ignored when selective auto ack is enabled. uint8_t pid; //!< PID assigned during communication. uint8_t data[NRF_ESB_MAX_PAYLOAD_LENGTH]; //!< The payload data. } nrf_esb_payload_t; /**@brief Enhanced ShockBurst event. */ typedef struct { nrf_esb_evt_id_t evt_id; //!< Enhanced ShockBurst event ID. uint32_t tx_attempts; //!< Number of TX retransmission attempts. } nrf_esb_evt_t; /**@brief Definition of the event handler for the module. */ typedef void (* nrf_esb_event_handler_t)(nrf_esb_evt_t const * p_event); /**@brief Main configuration structure for the module. */ typedef struct { nrf_esb_protocol_t protocol; //!< Enhanced ShockBurst protocol. nrf_esb_mode_t mode; //!< Enhanced ShockBurst mode. nrf_esb_event_handler_t event_handler; //!< Enhanced ShockBurst event handler. // General RF parameters nrf_esb_bitrate_t bitrate; //!< Enhanced ShockBurst bitrate mode. nrf_esb_crc_t crc; //!< Enhanced ShockBurst CRC mode. nrf_esb_tx_power_t tx_output_power; //!< Enhanced ShockBurst radio transmission power mode. uint16_t retransmit_delay; //!< The delay between each retransmission of unacknowledged packets. uint16_t retransmit_count; //!< The number of retransmission attempts before transmission fail. // Control settings nrf_esb_tx_mode_t tx_mode; //!< Enhanced ShockBurst transmission mode. uint8_t radio_irq_priority; //!< nRF radio interrupt priority. uint8_t event_irq_priority; //!< ESB event interrupt priority. uint8_t payload_length; //!< Length of the payload (maximum length depends on the platforms that are used on each side). bool selective_auto_ack; //!< Enable or disable selective auto acknowledgement. When this feature is disabled, all packets will be acknowledged ignoring the noack field. } nrf_esb_config_t; /**@brief Function for initializing the Enhanced ShockBurst module. * * @param p_config Parameters for initializing the module. * * @retval NRF_SUCCESS If initialization was successful. * @retval NRF_ERROR_NULL If the @p p_config argument was NULL. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_init(nrf_esb_config_t const * p_config); /**@brief Function for suspending the Enhanced ShockBurst module. * * Calling this function stops ongoing communications without changing the queues. * * @retval NRF_SUCCESS If Enhanced ShockBurst was suspended. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_suspend(void); /**@brief Function for disabling the Enhanced ShockBurst module. * * Calling this function disables the Enhanced ShockBurst module immediately. * Doing so might stop ongoing communications. * * @note All queues are flushed by this function. * * @retval NRF_SUCCESS If Enhanced ShockBurst was disabled. */ uint32_t nrf_esb_disable(void); /**@brief Function for checking if the Enhanced ShockBurst module is idle. * * @retval true If the module is idle. * @retval false If the module is busy. */ bool nrf_esb_is_idle(void); /**@brief Function for writing a payload for transmission or acknowledgement. * * This function writes a payload that is added to the queue. When the module is in PTX mode, the * payload is queued for a regular transmission. When the module is in PRX mode, the payload * is queued for when a packet is received that requires an acknowledgement with payload. * * @param[in] p_payload Pointer to the structure that contains information and state of the payload. * * @retval NRF_SUCCESS If the payload was successfully queued for writing. * @retval NRF_ERROR_NULL If the required parameter was NULL. * @retval NRF_INVALID_STATE If the module is not initialized. * @retval NRF_ERROR_NO_MEM If the TX FIFO is full. * @retval NRF_ERROR_INVALID_LENGTH If the payload length was invalid (zero or larger than the allowed maximum). */ uint32_t nrf_esb_write_payload(nrf_esb_payload_t const * p_payload); /**@brief Function for reading an RX payload. * * @param[in,out] p_payload Pointer to the structure that contains information and state of the payload. * * @retval NRF_SUCCESS If the data was read successfully. * @retval NRF_ERROR_NULL If the required parameter was NULL. * @retval NRF_INVALID_STATE If the module is not initialized. */ uint32_t nrf_esb_read_rx_payload(nrf_esb_payload_t * p_payload); /**@brief Function for starting transmission. * * @retval NRF_SUCCESS If the TX started successfully. * @retval NRF_ERROR_BUFFER_EMPTY If the TX did not start because the FIFO buffer is empty. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_start_tx(void); /**@brief Function for starting to transmit data from the FIFO buffer. * * @retval NRF_SUCCESS If the transmission was started successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_start_rx(void); /** @brief Function for stopping data reception. * * @retval NRF_SUCCESS If data reception was stopped successfully. * @retval NRF_ESB_ERROR_NOT_IN_RX_MODE If the function failed because the module is not in RX mode. */ uint32_t nrf_esb_stop_rx(void); /**@brief Function for removing remaining items from the TX buffer. * * This function clears the TX FIFO buffer. * * @retval NRF_SUCCESS If pending items in the TX buffer were successfully cleared. * @retval NRF_INVALID_STATE If the module is not initialized. */ uint32_t nrf_esb_flush_tx(void); /**@brief Function for removing the newest entry from the TX buffer. * * This function will remove the most recently added element from the FIFO queue. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_INVALID_STATE If the module is not initialized. * @retval NRF_ERROR_BUFFER_EMPTY If there are no items in the queue to remove. */ uint32_t nrf_esb_pop_tx(void); /**@brief Function for removing the oldest entry from the TX buffer. * * This function will remove the next element scheduled to be sent from the TX FIFO queue. * This is useful if you want to skip a packet which was never acknowledged. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_INVALID_STATE If the module is not initialized. * @retval NRF_ERROR_BUFFER_EMPTY If there are no items in the queue to remove. */ uint32_t nrf_esb_skip_tx(void); /**@brief Function for removing remaining items from the RX buffer. * * @retval NRF_SUCCESS If the pending items in the RX buffer were successfully cleared. * @retval NRF_INVALID_STATE If the module is not initialized. */ uint32_t nrf_esb_flush_rx(void); /**@brief Function for setting the length of the address. * * @param[in] length Length of the ESB address (in bytes). * * @retval NRF_SUCCESS If the address length was set successfully. * @retval NRF_ERROR_INVALID_PARAM If the address length was invalid. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_set_address_length(uint8_t length); /**@brief Function for setting the base address for pipe 0. * * @param[in] p_addr Pointer to the address data. * * @retval NRF_SUCCESS If the base address was set successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. * @retval NRF_ERROR_INVALID_PARAM If the function failed because the address given was too close to a zero address. * @retval NRF_ERROR_NULL If the required parameter was NULL. */ uint32_t nrf_esb_set_base_address_0(uint8_t const * p_addr); /**@brief Function for setting the base address for pipe 1 to pipe 7. * * @param[in] p_addr Pointer to the address data. * * @retval NRF_SUCCESS If the base address was set successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. * @retval NRF_ERROR_INVALID_PARAM If the function failed because the address given was too close to a zero address. * @retval NRF_ERROR_NULL If the required parameter was NULL. */ uint32_t nrf_esb_set_base_address_1(uint8_t const * p_addr); /**@brief Function for setting the number of pipes and the pipe prefix addresses. * * This function configures the number of available pipes, enables the pipes, * and sets their prefix addresses. * * @param[in] p_prefixes Pointer to a char array that contains the prefix for each pipe. * @param[in] num_pipes Number of pipes. Must be less than or equal to @ref NRF_ESB_PIPE_COUNT. * * @retval NRF_SUCCESS If the prefix addresses were set successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. * @retval NRF_ERROR_NULL If a required parameter was NULL. * @retval NRF_ERROR_INVALID_PARAM If an invalid number of pipes was given or if the address given was too close to a zero address. */ uint32_t nrf_esb_set_prefixes(uint8_t const * p_prefixes, uint8_t num_pipes); /**@brief Function for enabling pipes. * * The @p enable_mask parameter must contain the same number of pipes as has been configured * with @ref nrf_esb_set_prefixes. This number may not be greater than the number defined by * @ref NRF_ESB_PIPE_COUNT * * @param enable_mask Bitfield mask to enable or disable pipes. Setting a bit to * 0 disables the pipe. Setting a bit to 1 enables the pipe. * * @retval NRF_SUCCESS If the pipes were enabled and disabled successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. * @retval NRF_ERROR_INVALID_PARAM If the function failed because the address given was too close to a zero address. */ uint32_t nrf_esb_enable_pipes(uint8_t enable_mask); /**@brief Function for updating the prefix for a pipe. * * @param pipe Pipe for which to set the prefix. * @param prefix Prefix to set for the pipe. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. * @retval NRF_ERROR_INVALID_PARAM If the given pipe number was invalid or if the address given was too close to a zero address. */ uint32_t nrf_esb_update_prefix(uint8_t pipe, uint8_t prefix); /** @brief Function for setting the channel to use for the radio. * * The module must be in an idle state to call this function. As a PTX, the * application must wait for an idle state and as a PRX, the application must stop RX * before changing the channel. After changing the channel, operation can be resumed. * * @param[in] channel Channel to use for radio. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_INVALID_STATE If the module is not initialized. * @retval NRF_ERROR_BUSY If the module was not in idle state. * @retval NRF_ERROR_INVALID_PARAM If the channel is invalid (larger than 100). */ uint32_t nrf_esb_set_rf_channel(uint32_t channel); /**@brief Function for getting the current radio channel. * * @param[in, out] p_channel Pointer to the channel data. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_ERROR_NULL If the required parameter was NULL. */ uint32_t nrf_esb_get_rf_channel(uint32_t * p_channel); /**@brief Function for setting the radio output power. * * @param[in] tx_output_power Output power. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_set_tx_power(nrf_esb_tx_power_t tx_output_power); /**@brief Function for setting the packet retransmit delay. * * @param[in] delay Delay between retransmissions. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_set_retransmit_delay(uint16_t delay); /**@brief Function for setting the number of retransmission attempts. * * @param[in] count Number of retransmissions. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_set_retransmit_count(uint16_t count); /**@brief Function for setting the radio bitrate. * * @param[in] bitrate Radio bitrate. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_set_bitrate(nrf_esb_bitrate_t bitrate); /**@brief Function for reusing a packet ID for a specific pipe. * * The ESB protocol uses a 2-bit sequence number (packet ID) to identify * retransmitted packets. By default, the packet ID is incremented for every * uploaded packet. Use this function to prevent this and send two different * packets with the same packet ID. * * @param[in] pipe Pipe. * * @retval NRF_SUCCESS If the operation completed successfully. * @retval NRF_ERROR_BUSY If the function failed because the radio is busy. */ uint32_t nrf_esb_reuse_pid(uint8_t pipe); /** @} */ #ifdef __cplusplus } #endif #endif // NRF_ESB