/** * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_RTC_H #define NRF_RTC_H #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_rtc_hal RTC HAL * @{ * @ingroup nrf_rtc * @brief Hardware access layer for managing the Real Time Counter (RTC) peripheral. */ /** @brief Macro for getting the number of compare channels available in a given RTC instance. */ #define NRF_RTC_CC_CHANNEL_COUNT(id) NRFX_CONCAT_3(RTC, id, _CC_NUM) #define RTC_INPUT_FREQ 32768 /**< Input frequency of the RTC instance. */ /** @brief Macro for converting expected frequency to prescaler setting. */ #define RTC_FREQ_TO_PRESCALER(FREQ) (uint16_t)(((RTC_INPUT_FREQ) / (FREQ)) - 1) /**< Macro for wrapping values to RTC capacity. */ #define RTC_WRAP(val) ((val) & RTC_COUNTER_COUNTER_Msk) #define RTC_CHANNEL_INT_MASK(ch) \ ((uint32_t)(NRF_RTC_INT_COMPARE0_MASK) << (ch)) #define RTC_CHANNEL_EVENT_ADDR(ch) \ (nrf_rtc_event_t)((NRF_RTC_EVENT_COMPARE_0) + (ch) * sizeof(uint32_t)) /** @brief RTC tasks. */ typedef enum { /*lint -save -e30*/ NRF_RTC_TASK_START = offsetof(NRF_RTC_Type,TASKS_START), /**< Start. */ NRF_RTC_TASK_STOP = offsetof(NRF_RTC_Type,TASKS_STOP), /**< Stop. */ NRF_RTC_TASK_CLEAR = offsetof(NRF_RTC_Type,TASKS_CLEAR), /**< Clear. */ NRF_RTC_TASK_TRIGGER_OVERFLOW = offsetof(NRF_RTC_Type,TASKS_TRIGOVRFLW),/**< Trigger overflow. */ /*lint -restore*/ } nrf_rtc_task_t; /** @brief RTC events. */ typedef enum { /*lint -save -e30*/ NRF_RTC_EVENT_TICK = offsetof(NRF_RTC_Type,EVENTS_TICK), /**< Tick event. */ NRF_RTC_EVENT_OVERFLOW = offsetof(NRF_RTC_Type,EVENTS_OVRFLW), /**< Overflow event. */ NRF_RTC_EVENT_COMPARE_0 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[0]), /**< Compare 0 event. */ NRF_RTC_EVENT_COMPARE_1 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[1]), /**< Compare 1 event. */ NRF_RTC_EVENT_COMPARE_2 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[2]), /**< Compare 2 event. */ NRF_RTC_EVENT_COMPARE_3 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[3]) /**< Compare 3 event. */ /*lint -restore*/ } nrf_rtc_event_t; /** @brief RTC interrupts. */ typedef enum { NRF_RTC_INT_TICK_MASK = RTC_INTENSET_TICK_Msk, /**< RTC interrupt from tick event. */ NRF_RTC_INT_OVERFLOW_MASK = RTC_INTENSET_OVRFLW_Msk, /**< RTC interrupt from overflow event. */ NRF_RTC_INT_COMPARE0_MASK = RTC_INTENSET_COMPARE0_Msk, /**< RTC interrupt from compare event on channel 0. */ NRF_RTC_INT_COMPARE1_MASK = RTC_INTENSET_COMPARE1_Msk, /**< RTC interrupt from compare event on channel 1. */ NRF_RTC_INT_COMPARE2_MASK = RTC_INTENSET_COMPARE2_Msk, /**< RTC interrupt from compare event on channel 2. */ NRF_RTC_INT_COMPARE3_MASK = RTC_INTENSET_COMPARE3_Msk /**< RTC interrupt from compare event on channel 3. */ } nrf_rtc_int_t; /** * @brief Function for setting a compare value for a channel. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ch Channel. * @param[in] cc_val Compare value to set. */ __STATIC_INLINE void nrf_rtc_cc_set(NRF_RTC_Type * p_reg, uint32_t ch, uint32_t cc_val); /** * @brief Function for returning the compare value for a channel. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ch Channel. * * @return COMPARE[ch] value. */ __STATIC_INLINE uint32_t nrf_rtc_cc_get(NRF_RTC_Type * p_reg, uint32_t ch); /** * @brief Function for enabling interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Interrupt mask to be enabled. */ __STATIC_INLINE void nrf_rtc_int_enable(NRF_RTC_Type * p_reg, uint32_t mask); /** * @brief Function for disabling interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Interrupt mask to be disabled. */ __STATIC_INLINE void nrf_rtc_int_disable(NRF_RTC_Type * p_reg, uint32_t mask); /** * @brief Function for checking if interrupts are enabled. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupt flags to check. * * @return Mask with enabled interrupts. */ __STATIC_INLINE uint32_t nrf_rtc_int_is_enabled(NRF_RTC_Type * p_reg, uint32_t mask); /** * @brief Function for returning the status of currently enabled interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Value in INTEN register. */ __STATIC_INLINE uint32_t nrf_rtc_int_get(NRF_RTC_Type * p_reg); #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for setting the subscribe configuration for a given * RTC task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to set the configuration. * @param[in] channel Channel through which to subscribe events. */ __STATIC_INLINE void nrf_rtc_subscribe_set(NRF_RTC_Type * p_reg, nrf_rtc_task_t task, uint8_t channel); /** * @brief Function for clearing the subscribe configuration for a given * RTC task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to clear the configuration. */ __STATIC_INLINE void nrf_rtc_subscribe_clear(NRF_RTC_Type * p_reg, nrf_rtc_task_t task); /** * @brief Function for setting the publish configuration for a given * RTC event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to set the configuration. * @param[in] channel Channel through which to publish the event. */ __STATIC_INLINE void nrf_rtc_publish_set(NRF_RTC_Type * p_reg, nrf_rtc_event_t event, uint8_t channel); /** * @brief Function for clearing the publish configuration for a given * RTC event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to clear the configuration. */ __STATIC_INLINE void nrf_rtc_publish_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event); #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for checking if an event is pending. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Address of the event. * * @return Mask of pending events. */ __STATIC_INLINE uint32_t nrf_rtc_event_pending(NRF_RTC_Type * p_reg, nrf_rtc_event_t event); /** * @brief Function for clearing an event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to clear. */ __STATIC_INLINE void nrf_rtc_event_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event); /** * @brief Function for returning a counter value. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Counter value. */ __STATIC_INLINE uint32_t nrf_rtc_counter_get(NRF_RTC_Type * p_reg); /** * @brief Function for setting a prescaler value. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] val Value to set the prescaler to. */ __STATIC_INLINE void nrf_rtc_prescaler_set(NRF_RTC_Type * p_reg, uint32_t val); /** * @brief Function for returning the address of an event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Requested event. * * @return Address of the requested event register. */ __STATIC_INLINE uint32_t nrf_rtc_event_address_get(NRF_RTC_Type * p_reg, nrf_rtc_event_t event); /** * @brief Function for returning the address of a task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Requested task. * * @return Address of the requested task register. */ __STATIC_INLINE uint32_t nrf_rtc_task_address_get(NRF_RTC_Type * p_reg, nrf_rtc_task_t task); /** * @brief Function for starting a task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Requested task. */ __STATIC_INLINE void nrf_rtc_task_trigger(NRF_RTC_Type * p_reg, nrf_rtc_task_t task); /** * @brief Function for enabling events. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of event flags to enable. */ __STATIC_INLINE void nrf_rtc_event_enable(NRF_RTC_Type * p_reg, uint32_t mask); /** * @brief Function for disabling an event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Requested event. */ __STATIC_INLINE void nrf_rtc_event_disable(NRF_RTC_Type * p_reg, uint32_t event); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_rtc_cc_set(NRF_RTC_Type * p_reg, uint32_t ch, uint32_t cc_val) { p_reg->CC[ch] = cc_val; } __STATIC_INLINE uint32_t nrf_rtc_cc_get(NRF_RTC_Type * p_reg, uint32_t ch) { return p_reg->CC[ch]; } __STATIC_INLINE void nrf_rtc_int_enable(NRF_RTC_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } __STATIC_INLINE void nrf_rtc_int_disable(NRF_RTC_Type * p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } __STATIC_INLINE uint32_t nrf_rtc_int_is_enabled(NRF_RTC_Type * p_reg, uint32_t mask) { return (p_reg->INTENSET & mask); } __STATIC_INLINE uint32_t nrf_rtc_int_get(NRF_RTC_Type * p_reg) { return p_reg->INTENSET; } #if defined(DPPI_PRESENT) __STATIC_INLINE void nrf_rtc_subscribe_set(NRF_RTC_Type * p_reg, nrf_rtc_task_t task, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = ((uint32_t)channel | RTC_SUBSCRIBE_START_EN_Msk); } __STATIC_INLINE void nrf_rtc_subscribe_clear(NRF_RTC_Type * p_reg, nrf_rtc_task_t task) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0; } __STATIC_INLINE void nrf_rtc_publish_set(NRF_RTC_Type * p_reg, nrf_rtc_event_t event, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = ((uint32_t)channel | RTC_PUBLISH_TICK_EN_Msk); } __STATIC_INLINE void nrf_rtc_publish_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0; } #endif // defined(DPPI_PRESENT) __STATIC_INLINE uint32_t nrf_rtc_event_pending(NRF_RTC_Type * p_reg, nrf_rtc_event_t event) { return *(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE void nrf_rtc_event_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)); (void)dummy; #endif } __STATIC_INLINE uint32_t nrf_rtc_counter_get(NRF_RTC_Type * p_reg) { return p_reg->COUNTER; } __STATIC_INLINE void nrf_rtc_prescaler_set(NRF_RTC_Type * p_reg, uint32_t val) { NRFX_ASSERT(val <= (RTC_PRESCALER_PRESCALER_Msk >> RTC_PRESCALER_PRESCALER_Pos)); p_reg->PRESCALER = val; } __STATIC_INLINE uint32_t rtc_prescaler_get(NRF_RTC_Type * p_reg) { return p_reg->PRESCALER; } __STATIC_INLINE uint32_t nrf_rtc_event_address_get(NRF_RTC_Type * p_reg, nrf_rtc_event_t event) { return (uint32_t)p_reg + event; } __STATIC_INLINE uint32_t nrf_rtc_task_address_get(NRF_RTC_Type * p_reg, nrf_rtc_task_t task) { return (uint32_t)p_reg + task; } __STATIC_INLINE void nrf_rtc_task_trigger(NRF_RTC_Type * p_reg, nrf_rtc_task_t task) { *(__IO uint32_t *)((uint32_t)p_reg + task) = 1; } __STATIC_INLINE void nrf_rtc_event_enable(NRF_RTC_Type * p_reg, uint32_t mask) { p_reg->EVTENSET = mask; } __STATIC_INLINE void nrf_rtc_event_disable(NRF_RTC_Type * p_reg, uint32_t mask) { p_reg->EVTENCLR = mask; } #endif /** @} */ #ifdef __cplusplus } #endif #endif /* NRF_RTC_H */