/** * Copyright (c) 2016 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(NRF_QUEUE) #include "nrf_queue.h" #include "app_util_platform.h" #if NRF_QUEUE_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL NRF_QUEUE_CONFIG_LOG_LEVEL #define NRF_LOG_INIT_FILTER_LEVEL NRF_QUEUE_CONFIG_LOG_INIT_FILTER_LEVEL #define NRF_LOG_INFO_COLOR NRF_QUEUE_CONFIG_INFO_COLOR #define NRF_LOG_DEBUG_COLOR NRF_QUEUE_CONFIG_DEBUG_COLOR #else #define NRF_LOG_LEVEL 0 #endif // NRF_QUEUE_CONFIG_LOG_ENABLED #include "nrf_log.h" NRF_SECTION_DEF(nrf_queue, nrf_queue_t); #if NRF_QUEUE_CLI_CMDS #include "nrf_cli.h" static void nrf_queue_status(nrf_cli_t const * p_cli, size_t argc, char **argv) { UNUSED_PARAMETER(argv); if (nrf_cli_help_requested(p_cli)) { nrf_cli_help_print(p_cli, NULL, 0); return; } if (argc > 1) { nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Bad argument count"); return; } uint32_t num_of_instances = NRF_SECTION_ITEM_COUNT(nrf_queue, nrf_queue_t); uint32_t i; for (i = 0; i < num_of_instances; i++) { const nrf_queue_t * p_instance = NRF_SECTION_ITEM_GET(nrf_queue, nrf_queue_t, i); uint32_t element_size = p_instance->element_size; uint32_t size = p_instance->size; uint32_t max_util = nrf_queue_max_utilization_get(p_instance); uint32_t util = nrf_queue_utilization_get(p_instance); const char * p_name = p_instance->p_name; nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "%s\r\n\t- Element size:\t%d\r\n" "\t- Usage:\t%u%% (%u out of %u elements)\r\n" "\t- Maximum:\t%u%% (%u out of %u elements)\r\n" "\t- Mode:\t\t%s\r\n\r\n", p_name, element_size, 100ul * util/size, util,size, 100ul * max_util/size, max_util,size, (p_instance->mode == NRF_QUEUE_MODE_OVERFLOW) ? "Overflow" : "No overflow"); } } // Register "queue" command and its subcommands in CLI. NRF_CLI_CREATE_STATIC_SUBCMD_SET(nrf_queue_commands) { NRF_CLI_CMD(status, NULL, "Print status of queue instances.", nrf_queue_status), NRF_CLI_SUBCMD_SET_END }; NRF_CLI_CMD_REGISTER(queue, &nrf_queue_commands, "Commands for BALLOC management", nrf_queue_status); #endif //NRF_QUEUE_CLI_CMDS /**@brief Get next element index. * * @param[in] p_queue Pointer to the queue instance. * @param[in] idx Current index. * * @return Next element index. */ __STATIC_INLINE size_t nrf_queue_next_idx(nrf_queue_t const * p_queue, size_t idx) { ASSERT(p_queue != NULL); return (idx < p_queue->size) ? (idx + 1) : 0; } /**@brief Get current queue utilization. This function assumes that this process will not be interrupted. * * @param[in] p_queue Pointer to the queue instance. * * @return Current queue utilization. */ __STATIC_INLINE size_t queue_utilization_get(nrf_queue_t const * p_queue) { size_t front = p_queue->p_cb->front; size_t back = p_queue->p_cb->back; return (back >= front) ? (back - front) : (p_queue->size + 1 - front + back); } bool nrf_queue_is_full(nrf_queue_t const * p_queue) { ASSERT(p_queue != NULL); size_t front = p_queue->p_cb->front; size_t back = p_queue->p_cb->back; return (nrf_queue_next_idx(p_queue, back) == front); } ret_code_t nrf_queue_push(nrf_queue_t const * p_queue, void const * p_element) { ret_code_t status = NRF_SUCCESS; ASSERT(p_queue != NULL); ASSERT(p_element != NULL); CRITICAL_REGION_ENTER(); bool is_full = nrf_queue_is_full(p_queue); if (!is_full || (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW)) { // Get write position. size_t write_pos = p_queue->p_cb->back; p_queue->p_cb->back = nrf_queue_next_idx(p_queue, p_queue->p_cb->back); if (is_full) { // Overwrite the oldest element. NRF_LOG_INST_WARNING(p_queue->p_log, "Queue full. Overwriting oldest element."); p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front); } // Write a new element. switch (p_queue->element_size) { case sizeof(uint8_t): ((uint8_t *)p_queue->p_buffer)[write_pos] = *((uint8_t *)p_element); break; case sizeof(uint16_t): ((uint16_t *)p_queue->p_buffer)[write_pos] = *((uint16_t *)p_element); break; case sizeof(uint32_t): ((uint32_t *)p_queue->p_buffer)[write_pos] = *((uint32_t *)p_element); break; case sizeof(uint64_t): ((uint64_t *)p_queue->p_buffer)[write_pos] = *((uint64_t *)p_element); break; default: memcpy((void *)((size_t)p_queue->p_buffer + write_pos * p_queue->element_size), p_element, p_queue->element_size); break; } // Update utilization. size_t utilization = queue_utilization_get(p_queue); if (p_queue->p_cb->max_utilization < utilization) { p_queue->p_cb->max_utilization = utilization; } } else { status = NRF_ERROR_NO_MEM; } CRITICAL_REGION_EXIT(); NRF_LOG_INST_DEBUG(p_queue->p_log, "pushed element 0x%08X, status:%d", p_element, status); return status; } ret_code_t nrf_queue_generic_pop(nrf_queue_t const * p_queue, void * p_element, bool just_peek) { ret_code_t status = NRF_SUCCESS; ASSERT(p_queue != NULL); ASSERT(p_element != NULL); CRITICAL_REGION_ENTER(); if (!nrf_queue_is_empty(p_queue)) { // Get read position. size_t read_pos = p_queue->p_cb->front; // Update next read position. if (!just_peek) { p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front); } // Read element. switch (p_queue->element_size) { case sizeof(uint8_t): *((uint8_t *)p_element) = ((uint8_t *)p_queue->p_buffer)[read_pos]; break; case sizeof(uint16_t): *((uint16_t *)p_element) = ((uint16_t *)p_queue->p_buffer)[read_pos]; break; case sizeof(uint32_t): *((uint32_t *)p_element) = ((uint32_t *)p_queue->p_buffer)[read_pos]; break; case sizeof(uint64_t): *((uint64_t *)p_element) = ((uint64_t *)p_queue->p_buffer)[read_pos]; break; default: memcpy(p_element, (void const *)((size_t)p_queue->p_buffer + read_pos * p_queue->element_size), p_queue->element_size); break; } } else { status = NRF_ERROR_NOT_FOUND; } CRITICAL_REGION_EXIT(); NRF_LOG_INST_DEBUG(p_queue->p_log, "%s element 0x%08X, status:%d", just_peek ? "peeked" : "popped", p_element, status); return status; } /**@brief Write elements to the queue. This function assumes that there is enough room in the queue * to write the requested number of elements and that this process will not be interrupted. * * @param[in] p_queue Pointer to the nrf_queue_t instance. * @param[in] p_data Pointer to the buffer with elements to write. * @param[in] element_count Number of elements to write. */ static void queue_write(nrf_queue_t const * p_queue, void const * p_data, uint32_t element_count) { size_t prev_available = nrf_queue_available_get(p_queue); size_t continuous = p_queue->size + 1 - p_queue->p_cb->back; void * p_write_ptr = (void *)((size_t)p_queue->p_buffer + p_queue->p_cb->back * p_queue->element_size); if (element_count <= continuous) { memcpy(p_write_ptr, p_data, element_count * p_queue->element_size); p_queue->p_cb->back = ((p_queue->p_cb->back + element_count) <= p_queue->size) ? (p_queue->p_cb->back + element_count) : 0; } else { size_t first_write_length = continuous * p_queue->element_size; memcpy(p_write_ptr, p_data, first_write_length); size_t elements_left = element_count - continuous; memcpy(p_queue->p_buffer, (void const *)((size_t)p_data + first_write_length), elements_left * p_queue->element_size); p_queue->p_cb->back = elements_left; if (prev_available < element_count) { // Overwrite the oldest elements. p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->back); } } // Update utilization. size_t utilization = queue_utilization_get(p_queue); if (p_queue->p_cb->max_utilization < utilization) { p_queue->p_cb->max_utilization = utilization; } } ret_code_t nrf_queue_write(nrf_queue_t const * p_queue, void const * p_data, size_t element_count) { ret_code_t status = NRF_SUCCESS; ASSERT(p_queue != NULL); ASSERT(p_data != NULL); ASSERT(element_count <= p_queue->size); if (element_count == 0) { return NRF_SUCCESS; } CRITICAL_REGION_ENTER(); if ((nrf_queue_available_get(p_queue) >= element_count) || (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW)) { queue_write(p_queue, p_data, element_count); } else { status = NRF_ERROR_NO_MEM; } CRITICAL_REGION_EXIT(); NRF_LOG_INST_DEBUG(p_queue->p_log, "Write %d elements (start address: 0x%08X), status:%d", element_count, p_data, status); return status; } size_t nrf_queue_in(nrf_queue_t const * p_queue, void const * p_data, size_t element_count) { ASSERT(p_queue != NULL); ASSERT(p_data != NULL); size_t req_element_count = element_count; if (element_count == 0) { return 0; } CRITICAL_REGION_ENTER(); if (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW) { element_count = MIN(element_count, p_queue->size); } else { size_t available = nrf_queue_available_get(p_queue); element_count = MIN(element_count, available); } queue_write(p_queue, p_data, element_count); CRITICAL_REGION_EXIT(); NRF_LOG_INST_DEBUG(p_queue->p_log, "Put in %d elements (start address: 0x%08X), requested :%d", element_count, p_data, req_element_count); return element_count; } /**@brief Read elements from the queue. This function assumes that there are enough elements * in the queue to read and that this process will not be interrupted. * * @param[in] p_queue Pointer to the nrf_queue_t instance. * @param[out] p_data Pointer to the buffer where elements will be copied. * @param[in] element_count Number of elements to read. */ static void queue_read(nrf_queue_t const * p_queue, void * p_data, uint32_t element_count) { size_t front = p_queue->p_cb->front; size_t back = p_queue->p_cb->back; size_t continuous = (front <= back) ? (back - front) : (p_queue->size + 1 - front); void const * p_read_ptr = (void const *)((size_t)p_queue->p_buffer + front * p_queue->element_size); if (element_count <= continuous) { memcpy(p_data, p_read_ptr, element_count * p_queue->element_size); p_queue->p_cb->front = ((front + element_count) <= p_queue->size) ? (front + element_count) : 0; } else { size_t first_read_length = continuous * p_queue->element_size; memcpy(p_data, p_read_ptr, first_read_length); size_t elements_left = element_count - continuous; memcpy((void *)((size_t)p_data + first_read_length), p_queue->p_buffer, elements_left * p_queue->element_size); p_queue->p_cb->front = elements_left; } } ret_code_t nrf_queue_read(nrf_queue_t const * p_queue, void * p_data, size_t element_count) { ret_code_t status = NRF_SUCCESS; ASSERT(p_queue != NULL); ASSERT(p_data != NULL); if (element_count == 0) { return NRF_SUCCESS; } CRITICAL_REGION_ENTER(); if (element_count <= queue_utilization_get(p_queue)) { queue_read(p_queue, p_data, element_count); } else { status = NRF_ERROR_NOT_FOUND; } CRITICAL_REGION_EXIT(); NRF_LOG_INST_DEBUG(p_queue->p_log, "Read %d elements (start address: 0x%08X), status :%d", element_count, p_data, status); return status; } size_t nrf_queue_out(nrf_queue_t const * p_queue, void * p_data, size_t element_count) { ASSERT(p_queue != NULL); ASSERT(p_data != NULL); size_t req_element_count = element_count; if (element_count == 0) { return 0; } CRITICAL_REGION_ENTER(); size_t utilization = queue_utilization_get(p_queue); element_count = MIN(element_count, utilization); queue_read(p_queue, p_data, element_count); CRITICAL_REGION_EXIT(); NRF_LOG_INST_DEBUG(p_queue->p_log, "Out %d elements (start address: 0x%08X), requested :%d", element_count, p_data, req_element_count); return element_count; } void nrf_queue_reset(nrf_queue_t const * p_queue) { ASSERT(p_queue != NULL); CRITICAL_REGION_ENTER(); memset(p_queue->p_cb, 0, sizeof(nrf_queue_cb_t)); CRITICAL_REGION_EXIT(); NRF_LOG_INST_DEBUG(p_queue->p_log, "Reset"); } size_t nrf_queue_utilization_get(nrf_queue_t const * p_queue) { size_t utilization; ASSERT(p_queue != NULL); CRITICAL_REGION_ENTER(); utilization = queue_utilization_get(p_queue); CRITICAL_REGION_EXIT(); return utilization; } bool nrf_queue_is_empty(nrf_queue_t const * p_queue) { ASSERT(p_queue != NULL); size_t front = p_queue->p_cb->front; size_t back = p_queue->p_cb->back; return (front == back); } size_t nrf_queue_available_get(nrf_queue_t const * p_queue) { ASSERT(p_queue != NULL); return p_queue->size - nrf_queue_utilization_get(p_queue); } size_t nrf_queue_max_utilization_get(nrf_queue_t const * p_queue) { ASSERT(p_queue != NULL); return p_queue->p_cb->max_utilization; } void nrf_queue_max_utilization_reset(nrf_queue_t const * p_queue) { ASSERT(p_queue != NULL); p_queue->p_cb->max_utilization = 0; } #endif // NRF_MODULE_ENABLED(NRF_QUEUE)