/** * Copyright (c) 2012 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(BLE_DTM) #include "ble_dtm.h" #include "ble_dtm_hw.h" #include #include #include "nrf.h" #define DTM_HEADER_OFFSET 0 /**< Index where the header of the pdu is located. */ #define DTM_HEADER_SIZE 2 /**< Size of PDU header. */ #define DTM_PAYLOAD_MAX_SIZE 255 /**< Maximum payload size allowed during dtm execution. */ #define DTM_LENGTH_OFFSET (DTM_HEADER_OFFSET + 1) /**< Index where the length of the payload is encoded. */ #define DTM_PDU_MAX_MEMORY_SIZE (DTM_HEADER_SIZE + DTM_PAYLOAD_MAX_SIZE) /**< Maximum PDU size allowed during dtm execution. */ #define DTM_ON_AIR_OVERHEAD_SIZE 10 /**< Size of the packet on air without the payload (preamble + sync word + type + RFU + length + CRC). */ #define RX_MODE true /**< Constant defining RX mode for radio during dtm test. */ #define TX_MODE false /**< Constant defining TX mode for radio during dtm test. */ #define PHYS_CH_MAX 39 /**< Maximum number of valid channels in BLE. */ // Values that for now are "constants" - they could be configured by a function setting them, // but most of these are set by the BLE DTM standard, so changing them is not relevant. #define RFPHY_TEST_0X0F_REF_PATTERN 0x0f /**< RF-PHY test packet patterns, for the repeated octet packets. */ #define RFPHY_TEST_0X55_REF_PATTERN 0x55 /**< RF-PHY test packet patterns, for the repeated octet packets. */ #define RFPHY_TEST_0XFF_REF_PATTERN 0xFF /**< RF-PHY test packet patterns, for the repeated octet packets. */ #define PRBS9_CONTENT {0xFF, 0xC1, 0xFB, 0xE8, 0x4C, 0x90, 0x72, 0x8B, \ 0xE7, 0xB3, 0x51, 0x89, 0x63, 0xAB, 0x23, 0x23, \ 0x02, 0x84, 0x18, 0x72, 0xAA, 0x61, 0x2F, 0x3B, \ 0x51, 0xA8, 0xE5, 0x37, 0x49, 0xFB, 0xC9, 0xCA, \ 0x0C, 0x18, 0x53, 0x2C, 0xFD, 0x45, 0xE3, 0x9A, \ 0xE6, 0xF1, 0x5D, 0xB0, 0xB6, 0x1B, 0xB4, 0xBE, \ 0x2A, 0x50, 0xEA, 0xE9, 0x0E, 0x9C, 0x4B, 0x5E, \ 0x57, 0x24, 0xCC, 0xA1, 0xB7, 0x59, 0xB8, 0x87, \ 0xFF, 0xE0, 0x7D, 0x74, 0x26, 0x48, 0xB9, 0xC5, \ 0xF3, 0xD9, 0xA8, 0xC4, 0xB1, 0xD5, 0x91, 0x11, \ 0x01, 0x42, 0x0C, 0x39, 0xD5, 0xB0, 0x97, 0x9D, \ 0x28, 0xD4, 0xF2, 0x9B, 0xA4, 0xFD, 0x64, 0x65, \ 0x06, 0x8C, 0x29, 0x96, 0xFE, 0xA2, 0x71, 0x4D, \ 0xF3, 0xF8, 0x2E, 0x58, 0xDB, 0x0D, 0x5A, 0x5F, \ 0x15, 0x28, 0xF5, 0x74, 0x07, 0xCE, 0x25, 0xAF, \ 0x2B, 0x12, 0xE6, 0xD0, 0xDB, 0x2C, 0xDC, 0xC3, \ 0x7F, 0xF0, 0x3E, 0x3A, 0x13, 0xA4, 0xDC, 0xE2, \ 0xF9, 0x6C, 0x54, 0xE2, 0xD8, 0xEA, 0xC8, 0x88, \ 0x00, 0x21, 0x86, 0x9C, 0x6A, 0xD8, 0xCB, 0x4E, \ 0x14, 0x6A, 0xF9, 0x4D, 0xD2, 0x7E, 0xB2, 0x32, \ 0x03, 0xC6, 0x14, 0x4B, 0x7F, 0xD1, 0xB8, 0xA6, \ 0x79, 0x7C, 0x17, 0xAC, 0xED, 0x06, 0xAD, 0xAF, \ 0x0A, 0x94, 0x7A, 0xBA, 0x03, 0xE7, 0x92, 0xD7, \ 0x15, 0x09, 0x73, 0xE8, 0x6D, 0x16, 0xEE, 0xE1, \ 0x3F, 0x78, 0x1F, 0x9D, 0x09, 0x52, 0x6E, 0xF1, \ 0x7C, 0x36, 0x2A, 0x71, 0x6C, 0x75, 0x64, 0x44, \ 0x80, 0x10, 0x43, 0x4E, 0x35, 0xEC, 0x65, 0x27, \ 0x0A, 0xB5, 0xFC, 0x26, 0x69, 0x3F, 0x59, 0x99, \ 0x01, 0x63, 0x8A, 0xA5, 0xBF, 0x68, 0x5C, 0xD3, \ 0x3C, 0xBE, 0x0B, 0xD6, 0x76, 0x83, 0xD6, 0x57, \ 0x05, 0x4A, 0x3D, 0xDD, 0x81, 0x73, 0xC9, 0xEB, \ 0x8A, 0x84, 0x39, 0xF4, 0x36, 0x0B, 0xF7} /**< The PRBS9 sequence used as packet payload. The bytes in the sequence is in the right order, but the bits of each byte in the array is reverse. of that found by running the PRBS9 algorithm. This is because of the endianess of the nRF5 radio. */ /**@brief Structure holding the PDU used for transmitting/receiving a PDU. */ typedef struct { uint8_t content[DTM_HEADER_SIZE + DTM_PAYLOAD_MAX_SIZE]; /**< PDU packet content. */ } pdu_type_t; /**@brief States used for the DTM test implementation. */ typedef enum { STATE_UNINITIALIZED, /**< The DTM is uninitialized. */ STATE_IDLE, /**< State when system has just initialized, or current test has completed. */ STATE_TRANSMITTER_TEST, /**< State used when a DTM Transmission test is running. */ STATE_CARRIER_TEST, /**< State used when a DTM Carrier test is running (Vendor specific test). */ STATE_RECEIVER_TEST /**< State used when a DTM Receive test is running. */ } state_t; // Internal variables set as side effects of commands or events. static state_t m_state = STATE_UNINITIALIZED; /**< Current machine state. */ static uint16_t m_rx_pkt_count; /**< Number of valid packets received. */ static pdu_type_t m_pdu; /**< PDU to be sent. */ static uint16_t m_event; /**< current command status - initially "ok", may be set if error detected, or to packet count. */ static bool m_new_event; /**< Command has been processed - number of not yet reported event bytes. */ static uint32_t m_packet_length; /**< Payload length of transmitted PDU, bits 2:7 of 16-bit dtm command. */ static dtm_pkt_type_t m_packet_type; /**< Bits 0..1 of 16-bit transmit command, or 0xFFFFFFFF. */ static dtm_freq_t m_phys_ch; /**< 0..39 physical channel number (base 2402 MHz, Interval 2 MHz), bits 8:13 of 16-bit dtm command. */ static uint32_t m_current_time = 0; /**< Counter for interrupts from timer to ensure that the 2 bytes forming a DTM command are received within the time window. */ // Nordic specific configuration values (not defined by BLE standard). // Definition of initial values found in ble_dtm.h static int32_t m_tx_power = DEFAULT_TX_POWER; /**< TX power for transmission test, default 0 dBm. */ static NRF_TIMER_Type * mp_timer = DEFAULT_TIMER; /**< Timer to be used. */ static IRQn_Type m_timer_irq = DEFAULT_TIMER_IRQn; /**< which interrupt line to clear on every timeout */ static uint8_t const m_prbs_content[] = PRBS9_CONTENT; /**< Pseudo-random bit sequence defined by the BLE standard. */ static uint8_t m_packetHeaderLFlen = 8; /**< Length of length field in packet Header (in bits). */ static uint8_t m_packetHeaderS0len = 1; /**< Length of S0 field in packet Header (in bytes). */ static uint8_t m_packetHeaderS1len = 0; /**< Length of S1 field in packet Header (in bits). */ static uint8_t m_packetHeaderPlen = RADIO_PCNF0_PLEN_8bit; /**< Length of the preamble. */ static uint8_t m_crcConfSkipAddr = 1; /**< Leave packet address field out of CRC calculation. */ static uint8_t m_static_length = 0; /**< Number of bytes sent in addition to the var.length payload. */ static uint32_t m_balen = 3; /**< Base address length in bytes. */ static uint32_t m_endian = RADIO_PCNF1_ENDIAN_Little; /**< On air endianess of packet, this applies to the S0, LENGTH, S1 and the PAYLOAD fields. */ static uint32_t m_whitening = RADIO_PCNF1_WHITEEN_Disabled; /**< Whitening disabled. */ static uint8_t m_crcLength = RADIO_CRCCNF_LEN_Three; /**< CRC Length (in bytes). */ static uint32_t m_address = 0x71764129; /**< Address. */ static uint32_t m_crc_poly = 0x0000065B; /**< CRC polynomial. */ static uint32_t m_crc_init = 0x00555555; /**< Initial value for CRC calculation. */ static uint8_t m_radio_mode = RADIO_MODE_MODE_Ble_1Mbit; /**< nRF51 specific radio mode value. */ static uint32_t m_txIntervaluS = 2500; /**< Time between start of Tx packets (in uS). */ // The variables and defines below are related to the workaround for nRF52840 anomaly 172 static bool anomaly_172_wa_enabled = false; /**< Enable or disable the workaround for Errata 172. */ static uint8_t m_strict_mode = 0; /**< Enable or disable strict mode to workaround Errata 172. */ #define BLOCKER_FIX_RSSI_THRESHOLD 95 /**< The RSSI threshold at which to toggle strict mode. */ #define BLOCKER_FIX_WAIT_DEFAULT 1250 /**< 1250 * 8 = 10000 us = 10 ms. */ #define BLOCKER_FIX_WAIT_END 63 /**< 63 * 8 = ~500us. */ #define BLOCKER_FIX_CNTDETECTTHR 15 /**< Threshold used to determine necessary strict mode status changes. */ #define BLOCKER_FIX_CNTADDRTHR 2 /**< Threshold used to determine necessary strict mode status changes. */ /**@brief Function for verifying that a received PDU has the expected structure and content. */ static bool check_pdu(void) { uint8_t k; // Byte pointer for running through PDU payload uint8_t pattern; // Repeating octet value in payload dtm_pkt_type_t pdu_packet_type; // Note: PDU packet type is a 4-bit field in HCI, but 2 bits in BLE DTM uint32_t length = 0; pdu_packet_type = (dtm_pkt_type_t)(m_pdu.content[DTM_HEADER_OFFSET] & 0x0F); length = m_pdu.content[DTM_LENGTH_OFFSET]; // Check that the length is valid. if (length > DTM_PAYLOAD_MAX_SIZE) { return false; } // If the 1Mbit or 2Mbit radio mode is active, check that one of the three valid uncoded DTM packet types are selected. if ((m_radio_mode == RADIO_MODE_MODE_Ble_1Mbit || m_radio_mode == RADIO_MODE_MODE_Ble_2Mbit) && (pdu_packet_type > (dtm_pkt_type_t)DTM_PKT_0X55)) { return false; } #ifdef NRF52840_XXAA // If a long range radio mode is active, check that one of the four valid coded DTM packet types are selected. if ((m_radio_mode == RADIO_MODE_MODE_Ble_LR500Kbit || m_radio_mode == RADIO_MODE_MODE_Ble_LR125Kbit) && (pdu_packet_type > (dtm_pkt_type_t)DTM_PKT_0XFF)) { return false; } #endif if (pdu_packet_type == DTM_PKT_PRBS9) { // Payload does not consist of one repeated octet; must compare ir with entire block into return (memcmp(m_pdu.content + DTM_HEADER_SIZE, m_prbs_content, length) == 0); } if (pdu_packet_type == DTM_PKT_0X0F) { pattern = RFPHY_TEST_0X0F_REF_PATTERN; } else if (pdu_packet_type == DTM_PKT_0X55) { pattern = RFPHY_TEST_0X55_REF_PATTERN; } else if (pdu_packet_type == DTM_PKT_0XFF) { pattern = RFPHY_TEST_0XFF_REF_PATTERN; } else { // No valid packet type set. return false; } for (k = 0; k < length; k++) { // Check repeated pattern filling the PDU payload if (m_pdu.content[k + 2] != pattern) { return false; } } return true; } /**@brief Function for turning off the radio after a test. * Also called after test done, to be ready for next test. */ static void radio_reset(void) { NRF_PPI->CHENCLR = PPI_CHENCLR_CH0_Msk | PPI_CHENCLR_CH1_Msk; NRF_RADIO->SHORTS = 0; NRF_RADIO->EVENTS_DISABLED = 0; NRF_RADIO->TASKS_DISABLE = 1; while (NRF_RADIO->EVENTS_DISABLED == 0) { // Do nothing } NRF_RADIO->EVENTS_DISABLED = 0; NRF_RADIO->TASKS_RXEN = 0; NRF_RADIO->TASKS_TXEN = 0; m_rx_pkt_count = 0; } /**@brief Function for initializing the radio for DTM. */ static uint32_t radio_init(void) { if (dtm_radio_validate(m_tx_power, m_radio_mode) != DTM_SUCCESS) { m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } // Turn off radio before configuring it radio_reset(); NRF_RADIO->TXPOWER = m_tx_power & RADIO_TXPOWER_TXPOWER_Msk; NRF_RADIO->MODE = m_radio_mode << RADIO_MODE_MODE_Pos; // Set the access address, address0/prefix0 used for both Rx and Tx address NRF_RADIO->PREFIX0 &= ~RADIO_PREFIX0_AP0_Msk; NRF_RADIO->PREFIX0 |= (m_address >> 24) & RADIO_PREFIX0_AP0_Msk; NRF_RADIO->BASE0 = m_address << 8; NRF_RADIO->RXADDRESSES = RADIO_RXADDRESSES_ADDR0_Enabled << RADIO_RXADDRESSES_ADDR0_Pos; NRF_RADIO->TXADDRESS = (0x00 << RADIO_TXADDRESS_TXADDRESS_Pos) & RADIO_TXADDRESS_TXADDRESS_Msk; // Configure CRC calculation NRF_RADIO->CRCCNF = (m_crcConfSkipAddr << RADIO_CRCCNF_SKIP_ADDR_Pos) | (m_crcLength << RADIO_CRCCNF_LEN_Pos); if (m_radio_mode == RADIO_MODE_MODE_Ble_1Mbit || m_radio_mode == RADIO_MODE_MODE_Ble_2Mbit) { // Non-coded PHY NRF_RADIO->PCNF0 = (m_packetHeaderS1len << RADIO_PCNF0_S1LEN_Pos) | (m_packetHeaderS0len << RADIO_PCNF0_S0LEN_Pos) | (m_packetHeaderLFlen << RADIO_PCNF0_LFLEN_Pos) | (m_packetHeaderPlen << RADIO_PCNF0_PLEN_Pos); } #ifdef NRF52840_XXAA else { // Coded PHY (Long range) NRF_RADIO->PCNF0 = (m_packetHeaderS1len << RADIO_PCNF0_S1LEN_Pos) | (m_packetHeaderS0len << RADIO_PCNF0_S0LEN_Pos) | (m_packetHeaderLFlen << RADIO_PCNF0_LFLEN_Pos) | (3 << RADIO_PCNF0_TERMLEN_Pos) | (2 << RADIO_PCNF0_CILEN_Pos) | (m_packetHeaderPlen << RADIO_PCNF0_PLEN_Pos); } #endif NRF_RADIO->PCNF1 = (m_whitening << RADIO_PCNF1_WHITEEN_Pos) | (m_endian << RADIO_PCNF1_ENDIAN_Pos) | (m_balen << RADIO_PCNF1_BALEN_Pos) | (m_static_length << RADIO_PCNF1_STATLEN_Pos) | (DTM_PAYLOAD_MAX_SIZE << RADIO_PCNF1_MAXLEN_Pos); return DTM_SUCCESS; } // Strict mode setting will be used only by devices affected by nRF52840 anomaly 172 void set_strict_mode (bool enable) { uint8_t dbcCorrTh; uint8_t dsssMinPeakCount; if (enable == true) { dbcCorrTh = 0x7d; dsssMinPeakCount = 6; *(volatile uint32_t *) 0x4000173c = ((*((volatile uint32_t *) 0x4000173c)) & 0x7FFFFF00) | 0x80000000 | (((uint32_t)(dbcCorrTh)) << 0); *(volatile uint32_t *) 0x4000177c = ((*((volatile uint32_t *) 0x4000177c)) & 0x7FFFFF8F) | 0x80000000 | ((((uint32_t)dsssMinPeakCount) & 0x00000007) << 4); } else { *(volatile uint32_t *) 0x4000173c = 0x40003034; *(volatile uint32_t *) 0x4000177c = ((*((volatile uint32_t *) 0x4000177c)) & 0x7FFFFFFF); // Unset override of dsssMinPeakCount } m_strict_mode = enable; } // Radio configuration used as a workaround for nRF52840 anomaly 172 void anomaly_172_radio_operation(void) { *(volatile uint32_t *) 0x40001040 = 1; *(volatile uint32_t *) 0x40001038 = 1; } // Function to gather RSSI data and set strict mode accordingly. Used as part of the workaround for nRF52840 anomaly 172 uint8_t anomaly_172_rssi_check(void) { NRF_RADIO->EVENTS_RSSIEND = 0; NRF_RADIO->TASKS_RSSISTART = 1; while (NRF_RADIO->EVENTS_RSSIEND == 0); uint8_t rssi = NRF_RADIO->RSSISAMPLE; return rssi; } /**@brief Function for preparing the radio. At start of each test: Turn off RF, clear interrupt flags of RF, initialize the radio * at given RF channel. * *@param[in] rx boolean indicating if radio should be prepared in rx mode (true) or tx mode. */ static void radio_prepare(bool rx) { dtm_turn_off_test(); NRF_RADIO->CRCPOLY = m_crc_poly; NRF_RADIO->CRCINIT = m_crc_init; NRF_RADIO->FREQUENCY = (m_phys_ch << 1) + 2; // Actual frequency (MHz): 2400 + register value NRF_RADIO->PACKETPTR = (uint32_t)&m_pdu; // Setting packet pointer will start the radio NRF_RADIO->EVENTS_READY = 0; NRF_RADIO->SHORTS = (1 << RADIO_SHORTS_READY_START_Pos) | // Shortcut between READY event and START task (1 << RADIO_SHORTS_END_DISABLE_Pos); // Shortcut between END event and DISABLE task if (rx) { // Enable strict mode if running on a device affected by nRF52840 anomaly 172 if (anomaly_172_wa_enabled) { set_strict_mode(1); } NRF_RADIO->EVENTS_END = 0; NRF_RADIO->TASKS_RXEN = 1; // shorts will start radio in RX mode when it is ready } else // tx { NRF_RADIO->TXPOWER = m_tx_power & RADIO_TXPOWER_TXPOWER_Msk; // Stop the timer used by nRF52840 anomaly 172 if running on an affected device. if (anomaly_172_wa_enabled) { ANOMALY_172_TIMER->TASKS_CLEAR = 1; ANOMALY_172_TIMER->TASKS_STOP = 1; ANOMALY_172_TIMER->EVENTS_COMPARE[0] = 0; ANOMALY_172_TIMER->EVENTS_COMPARE[1] = 0; } } } /**@brief Function for terminating the ongoing test (if any) and closing down the radio. */ static void dtm_test_done(void) { dtm_turn_off_test(); NRF_PPI->CHENCLR = 0x01; NRF_PPI->CH[0].EEP = 0; // Break connection from timer to radio to stop transmit loop NRF_PPI->CH[0].TEP = 0; ANOMALY_172_TIMER->TASKS_SHUTDOWN = 1; radio_reset(); m_state = STATE_IDLE; } /**@brief Function for configuring the timer for 625us cycle time. */ static uint32_t timer_init(void) { // Use 16MHz from external crystal // This could be customized for RC/Xtal, or even to use a 32 kHz crystal NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; NRF_CLOCK->TASKS_HFCLKSTART = 1; while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) { // Do nothing while waiting for the clock to start } mp_timer->TASKS_STOP = 1; // Stop timer, if it was running mp_timer->TASKS_CLEAR = 1; mp_timer->MODE = TIMER_MODE_MODE_Timer; // Timer mode (not counter) mp_timer->EVENTS_COMPARE[0] = 0; // clean up possible old events mp_timer->EVENTS_COMPARE[1] = 0; mp_timer->EVENTS_COMPARE[2] = 0; mp_timer->EVENTS_COMPARE[3] = 0; // Timer is polled, but enable the compare0 interrupt in order to wakeup from CPU sleep mp_timer->INTENSET = TIMER_INTENSET_COMPARE0_Msk; mp_timer->SHORTS = 1 << TIMER_SHORTS_COMPARE0_CLEAR_Pos; // Clear the count every time timer reaches the CCREG0 count mp_timer->PRESCALER = 4; // Input clock is 16MHz, timer clock = 2 ^ prescale -> interval 1us mp_timer->CC[0] = m_txIntervaluS; // 625uS with 1MHz clock to the timer mp_timer->CC[1] = UART_POLL_CYCLE; // Depends on the baud rate of the UART. Default baud rate of 19200 will result in a 260uS time with 1MHz clock to the timer mp_timer->TASKS_START = 1; // Start the timer - it will be running continuously m_current_time = 0; // Enable the timer used by nRF52840 anomaly 172 if running on an affected device. if (true) { ANOMALY_172_TIMER->TASKS_STOP = 1; // Stop timer, if it was running ANOMALY_172_TIMER->TASKS_CLEAR = 1; ANOMALY_172_TIMER->MODE = TIMER_MODE_MODE_Timer; // Timer mode (not counter) ANOMALY_172_TIMER->EVENTS_COMPARE[0] = 0; // clean up possible old events ANOMALY_172_TIMER->EVENTS_COMPARE[1] = 0; ANOMALY_172_TIMER->EVENTS_COMPARE[2] = 0; ANOMALY_172_TIMER->EVENTS_COMPARE[3] = 0; ANOMALY_172_TIMER->CC[0] = BLOCKER_FIX_WAIT_DEFAULT; ANOMALY_172_TIMER->CC[1] = 0; NVIC_ClearPendingIRQ(ANOMALY_172_TIMER_IRQn); ANOMALY_172_TIMER->PRESCALER = 7; // Input clock is 16MHz, timer clock = 2 ^ prescale -> interval 1us } return DTM_SUCCESS; } /**@brief Function for handling vendor specific commands. * Used when packet type is set to Vendor specific. * The length field is used for encoding vendor specific command. * The frequency field is used for encoding vendor specific options to the command. * * @param[in] vendor_cmd Vendor specific command to be executed. * @param[in] vendor_option Vendor specific option to the vendor command. * * @return DTM_SUCCESS or one of the DTM_ERROR_ values */ static uint32_t dtm_vendor_specific_pkt(uint32_t vendor_cmd, dtm_freq_t vendor_option) { switch (vendor_cmd) { // nRFgo Studio uses CARRIER_TEST_STUDIO to indicate a continuous carrier without // a modulated signal. case CARRIER_TEST: case CARRIER_TEST_STUDIO: // Not a packet type, but used to indicate that a continuous carrier signal // should be transmitted by the radio. radio_prepare(TX_MODE); dtm_constant_carrier(); // Shortcut between READY event and START task NRF_RADIO->SHORTS = 1 << RADIO_SHORTS_READY_START_Pos; // Shortcut will start radio in Tx mode when it is ready NRF_RADIO->TASKS_TXEN = 1; m_state = STATE_CARRIER_TEST; break; case SET_TX_POWER: if (!dtm_set_txpower(vendor_option)) { m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } break; case SELECT_TIMER: if (!dtm_set_timer(vendor_option)) { m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } break; } // Event code is unchanged, successful return DTM_SUCCESS; } static uint32_t dtm_packet_interval_calculate(uint32_t test_payload_length, uint32_t mode) { uint32_t test_packet_length = 0; // [us] NOTE: bits are us at 1Mbit uint32_t packet_interval = 0; // us uint32_t overhead_bits = 0; // bits /* packet overhead * see BLE [Vol 6, Part F] page 213 * 4.1 LE TEST PACKET FORMAT */ if (mode == RADIO_MODE_MODE_Ble_2Mbit) { // 16 preamble // 32 sync word // 8 PDU header, actually packetHeaderS0len * 8 // 8 PDU length, actually packetHeaderLFlen // 24 CRC overhead_bits = 88; // 11 bytes } else if (mode == RADIO_MODE_MODE_Ble_1Mbit) { // 8 preamble // 32 sync word // 8 PDU header, actually packetHeaderS0len * 8 // 8 PDU length, actually packetHeaderLFlen // 24 CRC overhead_bits = 80; // 10 bytes } #ifdef NRF52840_XXAA else if (mode == RADIO_MODE_MODE_Ble_LR125Kbit) { // 80 preamble // 32 * 8 sync word coding=8 // 2 * 8 Coding indicator, coding=8 // 3 * 8 TERM1 coding=8 // 8 * 8 PDU header, actually packetHeaderS0len * 8 coding=8 // 8 * 8 PDU length, actually packetHeaderLFlen coding=8 // 24 * 8 CRC coding=8 // 3 * 8 TERM2 coding=8 overhead_bits = 720; // 90 bytes } else if (mode == RADIO_MODE_MODE_Ble_LR500Kbit) { // 80 preamble // 32 * 8 sync word coding=8 // 2 * 8 Coding indicator, coding=8 // 3 * 8 TERM 1 coding=8 // 8 * 2 PDU header, actually packetHeaderS0len * 8 coding=2 // 8 * 2 PDU length, actually packetHeaderLFlen coding=2 // 24 * 2 CRC coding=2 // 3 * 2 TERM2 coding=2 // NOTE: this makes us clock out 46 bits for CI + TERM1 + TERM2 // assumption the radio will handle this overhead_bits = 462; // 57.75 bytes } #endif /* add PDU payload test_payload length */ test_packet_length = (test_payload_length * 8); // in bits #ifdef NRF52840_XXAA // account for the encoding of PDU if (mode == RADIO_MODE_MODE_Ble_LR125Kbit) { test_packet_length *= 8; // 1 to 8 encoding } if (mode == RADIO_MODE_MODE_Ble_LR500Kbit) { test_packet_length *= 2; // 1 to 2 encoding } #endif // add overhead calculated above test_packet_length += overhead_bits; // we remember this bits are us in 1Mbit if (mode == RADIO_MODE_MODE_Ble_2Mbit) { test_packet_length /= 2; // double speed } /* * packet_interval = ceil((test_packet_length+249)/625)*625 * NOTE: To avoid floating point an equivalent calculation is used. */ uint32_t i = 0; uint32_t timeout = 0; do { i++; timeout = i * 625; } while (test_packet_length + 249 > timeout); packet_interval = i * 625; return packet_interval; } uint32_t dtm_init(void) { if ((timer_init() != DTM_SUCCESS) || (radio_init() != DTM_SUCCESS)) { return DTM_ERROR_ILLEGAL_CONFIGURATION; } m_new_event = false; m_state = STATE_IDLE; m_packet_length = 0; // Enable wake-up on event SCB->SCR |= SCB_SCR_SEVONPEND_Msk; #if defined(NRF52832_XXAA) || defined(NRF52840_XXAA) // Enable cache NRF_NVMC->ICACHECNF = (NVMC_ICACHECNF_CACHEEN_Enabled << NVMC_ICACHECNF_CACHEEN_Pos) & NVMC_ICACHECNF_CACHEEN_Msk; #endif return DTM_SUCCESS; } uint32_t dtm_wait(void) { // Enable wake-up on event SCB->SCR |= SCB_SCR_SEVONPEND_Msk; for (;;) { if (m_state == STATE_RECEIVER_TEST && NRF_RADIO->EVENTS_ADDRESS == 1) { NRF_RADIO->EVENTS_ADDRESS = 0; if (anomaly_172_wa_enabled) { ANOMALY_172_TIMER->TASKS_SHUTDOWN = 1; } } // Event may be the reception of a packet - // handle radio first, to give it highest priority: if (NRF_RADIO->EVENTS_END != 0) { NRF_RADIO->EVENTS_END = 0; NVIC_ClearPendingIRQ(RADIO_IRQn); if (m_state == STATE_RECEIVER_TEST) { NRF_RADIO->TASKS_RXEN = 1; if (anomaly_172_wa_enabled) { ANOMALY_172_TIMER->CC[0] = BLOCKER_FIX_WAIT_DEFAULT; ANOMALY_172_TIMER->CC[1] = BLOCKER_FIX_WAIT_END; ANOMALY_172_TIMER->TASKS_CLEAR = 1; ANOMALY_172_TIMER->EVENTS_COMPARE[0] = 0; ANOMALY_172_TIMER->EVENTS_COMPARE[1] = 0; ANOMALY_172_TIMER->TASKS_START = 1; } if ((NRF_RADIO->CRCSTATUS == 1) && check_pdu()) { // Count the number of successfully received packets m_rx_pkt_count++; } // Note that failing packets are simply ignored (CRC or contents error). // Zero fill all pdu fields to avoid stray data memset(&m_pdu, 0, DTM_PDU_MAX_MEMORY_SIZE); } // If no RECEIVER_TEST is running, ignore incoming packets (but do clear IRQ!) } if (m_state == STATE_RECEIVER_TEST && NRF_RADIO->EVENTS_READY == 1) { NRF_RADIO->EVENTS_READY = 0; if (anomaly_172_wa_enabled) { ANOMALY_172_TIMER->TASKS_CLEAR = 1; ANOMALY_172_TIMER->TASKS_START = 1; } } // Check for timeouts: if (mp_timer->EVENTS_COMPARE[0] != 0) { mp_timer->EVENTS_COMPARE[0] = 0; } else if (mp_timer->EVENTS_COMPARE[1] != 0) { // Reset timeout event flag for next iteration. mp_timer->EVENTS_COMPARE[1] = 0; NVIC_ClearPendingIRQ(m_timer_irq); return ++m_current_time; } if (ANOMALY_172_TIMER->EVENTS_COMPARE[0] == 1) { uint8_t rssi = anomaly_172_rssi_check(); if (m_strict_mode) { if (rssi > BLOCKER_FIX_RSSI_THRESHOLD) { set_strict_mode(0); } } else { bool too_many_detects = false; uint32_t packetcnt2 = *(volatile uint32_t *) 0x40001574; uint32_t detect_cnt = packetcnt2 & 0xffff; uint32_t addr_cnt = (packetcnt2 >> 16) & 0xffff; if ((detect_cnt > BLOCKER_FIX_CNTDETECTTHR) && (addr_cnt < BLOCKER_FIX_CNTADDRTHR)) { too_many_detects = true; } if ((rssi < BLOCKER_FIX_RSSI_THRESHOLD) || too_many_detects) { set_strict_mode(1); } } anomaly_172_radio_operation(); ANOMALY_172_TIMER->CC[0] = BLOCKER_FIX_WAIT_DEFAULT; ANOMALY_172_TIMER->TASKS_STOP = 1; ANOMALY_172_TIMER->TASKS_CLEAR = 1; ANOMALY_172_TIMER->EVENTS_COMPARE[0] = 0; ANOMALY_172_TIMER->TASKS_START = 1; NVIC_ClearPendingIRQ(ANOMALY_172_TIMER_IRQn); } if (ANOMALY_172_TIMER->EVENTS_COMPARE[1] != 0) { uint8_t rssi = anomaly_172_rssi_check(); if (rssi >= BLOCKER_FIX_RSSI_THRESHOLD) { set_strict_mode(0); } else { set_strict_mode(1); } anomaly_172_radio_operation(); // Disable this event. ANOMALY_172_TIMER->CC[1] = 0; ANOMALY_172_TIMER->EVENTS_COMPARE[1] = 0; NVIC_ClearPendingIRQ(ANOMALY_172_TIMER_IRQn); } // Other events: No processing } } uint32_t dtm_cmd(dtm_cmd_t cmd, dtm_freq_t freq, uint32_t length, dtm_pkt_type_t payload) { // Save specified packet in static variable for tx/rx functions to use. // Note that BLE conformance testers always use full length packets. m_packet_length = (m_packet_length & 0xC0) | ((uint8_t)length & 0x3F); m_packet_type = payload; m_phys_ch = freq; // If 1 Mbit or 2 Mbit radio mode is in use check for Vendor Specific payload. if ((m_radio_mode == RADIO_MODE_MODE_Ble_1Mbit || m_radio_mode == RADIO_MODE_MODE_Ble_2Mbit) && payload == DTM_PKT_VENDORSPECIFIC) { /* Note that in a HCI adaption layer, as well as in the DTM PDU format, the value 0x03 is a distinct bit pattern (PRBS15). Even though BLE does not support PRBS15, this implementation re-maps 0x03 to DTM_PKT_VENDORSPECIFIC, to avoid the risk of confusion, should the code be extended to greater coverage. */ m_packet_type = DTM_PKT_TYPE_VENDORSPECIFIC; } // Clean out any non-retrieved event that might linger from an earlier test m_new_event = true; // Set default event; any error will set it to LE_TEST_STATUS_EVENT_ERROR m_event = LE_TEST_STATUS_EVENT_SUCCESS; if (m_state == STATE_UNINITIALIZED) { // Application has not explicitly initialized DTM, return DTM_ERROR_UNINITIALIZED; } if (cmd == LE_TEST_SETUP) { // Note that timer will continue running after a reset dtm_test_done(); if (freq == LE_TEST_SETUP_RESET) { if (length != 0x00) { m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } // Reset the packet length upper bits. m_packet_length = 0; // Reset the selected PHY to 1Mbit m_radio_mode = RADIO_MODE_MODE_Ble_1Mbit; m_packetHeaderPlen = RADIO_PCNF0_PLEN_8bit; #ifdef NRF52840_XXAA // Workaround for Errata ID 191 *(volatile uint32_t *) 0x40001740 = ((*((volatile uint32_t *) 0x40001740)) & 0x7FFFFFFF); #endif } else if (freq == LE_TEST_SETUP_SET_UPPER) { if (length > 0x03) { m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } m_packet_length = length << 6; } else if (freq == LE_TEST_SETUP_SET_PHY) { switch (length) { case LE_PHY_1M: m_radio_mode = RADIO_MODE_MODE_Ble_1Mbit; m_packetHeaderPlen = RADIO_PCNF0_PLEN_8bit; #ifdef NRF52840_XXAA // Workaround for Errata ID 191 *(volatile uint32_t *) 0x40001740 = ((*((volatile uint32_t *) 0x40001740)) & 0x7FFFFFFF); #endif // Disable the workaround for nRF52840 anomaly 172. set_strict_mode(0); ANOMALY_172_TIMER->TASKS_SHUTDOWN = 1; anomaly_172_wa_enabled = false; return radio_init(); case LE_PHY_2M: m_radio_mode = RADIO_MODE_MODE_Ble_2Mbit; m_packetHeaderPlen = RADIO_PCNF0_PLEN_16bit; #ifdef NRF52840_XXAA // Workaround for Errata ID 191 *(volatile uint32_t *) 0x40001740 = ((*((volatile uint32_t *) 0x40001740)) & 0x7FFFFFFF); #endif // Disable the workaround for nRF52840 anomaly 172. set_strict_mode(0); ANOMALY_172_TIMER->TASKS_SHUTDOWN = 1; anomaly_172_wa_enabled = false; return radio_init(); case LE_PHY_LE_CODED_S8: #ifdef NRF52840_XXAA m_radio_mode = RADIO_MODE_MODE_Ble_LR125Kbit; m_packetHeaderPlen = RADIO_PCNF0_PLEN_LongRange; // Workaround for Errata ID 191 *(volatile uint32_t *) 0x40001740 = ((*((volatile uint32_t *) 0x40001740)) & 0x7FFF00FF) | 0x80000000 | (((uint32_t)(196)) << 8); // Enable the workaround for nRF52840 anomaly 172 on affected devices. if ((*(volatile uint32_t *)0x40001788) == 0) { anomaly_172_wa_enabled = true; } return radio_init(); #else m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; #endif // NRF52840_XXAA case LE_PHY_LE_CODED_S2: #ifdef NRF52840_XXAA m_radio_mode = RADIO_MODE_MODE_Ble_LR500Kbit; m_packetHeaderPlen = RADIO_PCNF0_PLEN_LongRange; // Workaround for Errata ID 191 *(volatile uint32_t *) 0x40001740 = ((*((volatile uint32_t *) 0x40001740)) & 0x7FFF00FF) | 0x80000000 | (((uint32_t)(196)) << 8); // Enable the workaround for nRF52840 anomaly 172 on affected devices. if ((*(volatile uint32_t *)0x40001788) == 0) { anomaly_172_wa_enabled = true; } return radio_init(); #else m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; #endif default: m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } } else if (freq == LE_TEST_SETUP_SELECT_MODULATION) { if (length > 0x01) { m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } // Only standard modulation is supported. } else if (freq == LE_TEST_SETUP_READ_SUPPORTED) { if (length != 0x00) { m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } // 0XXXXXXXXXXX0110 indicate that 2Mbit and DLE is supported and stable modulation is not supported (No nRF5 device supports this). m_event = 0x0006; } else if (freq == LE_TEST_SETUP_READ_MAX) { // Read max supported value. switch (length) { case 0x00: // Read supportedMaxTxOctets m_event = 0x01FE; break; case 0x01: // Read supportedMaxTxTime m_event = 0x4290; break; case 0x02: // Read supportedMaxRxOctets m_event = 0x01FE; break; case 0x03: // Read supportedMaxRxTime m_event = 0x4290; break; default: m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } } else { m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } return DTM_SUCCESS; } if (cmd == LE_TEST_END) { if (m_state == STATE_IDLE) { // Sequencing error - only rx or tx test may be ended! m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_INVALID_STATE; } m_event = LE_PACKET_REPORTING_EVENT | m_rx_pkt_count; dtm_test_done(); return DTM_SUCCESS; } if (m_state != STATE_IDLE) { // Sequencing error - only TEST_END/RESET are legal while test is running // Note: State is unchanged; ongoing test not affected m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_INVALID_STATE; } // Check for illegal values of m_phys_ch. Skip the check if the packet is vendor spesific. if (payload != DTM_PKT_VENDORSPECIFIC && m_phys_ch > PHYS_CH_MAX) { // Parameter error // Note: State is unchanged; ongoing test not affected m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CHANNEL; } m_rx_pkt_count = 0; if (cmd == LE_RECEIVER_TEST) { // Zero fill all pdu fields to avoid stray data from earlier test run memset(&m_pdu, 0, DTM_PDU_MAX_MEMORY_SIZE); radio_prepare(RX_MODE); // Reinitialize "everything"; RF interrupts OFF m_state = STATE_RECEIVER_TEST; return DTM_SUCCESS; } if (cmd == LE_TRANSMITTER_TEST) { // Check for illegal values of m_packet_length. Skip the check if the packet is vendor spesific. if (m_packet_type != DTM_PKT_TYPE_VENDORSPECIFIC && m_packet_length > DTM_PAYLOAD_MAX_SIZE) { // Parameter error m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_LENGTH; } m_pdu.content[DTM_LENGTH_OFFSET] = m_packet_length; // Note that PDU uses 4 bits even though BLE DTM uses only 2 (the HCI SDU uses all 4) switch (m_packet_type) { case DTM_PKT_PRBS9: m_pdu.content[DTM_HEADER_OFFSET] = DTM_PDU_TYPE_PRBS9; // Non-repeated, must copy entire pattern to PDU memcpy(m_pdu.content + DTM_HEADER_SIZE, m_prbs_content, m_packet_length); break; case DTM_PKT_0X0F: m_pdu.content[DTM_HEADER_OFFSET] = DTM_PDU_TYPE_0X0F; // Bit pattern 00001111 repeated memset(m_pdu.content + DTM_HEADER_SIZE, RFPHY_TEST_0X0F_REF_PATTERN, m_packet_length); break; case DTM_PKT_0X55: m_pdu.content[DTM_HEADER_OFFSET] = DTM_PDU_TYPE_0X55; // Bit pattern 01010101 repeated memset(m_pdu.content + DTM_HEADER_SIZE, RFPHY_TEST_0X55_REF_PATTERN, m_packet_length); break; case DTM_PKT_0XFF: m_pdu.content[DTM_HEADER_OFFSET] = DTM_PDU_TYPE_0XFF; // Bit pattern 11111111 repeated. Only available in coded PHY (Long range). memset(m_pdu.content + DTM_HEADER_SIZE, RFPHY_TEST_0XFF_REF_PATTERN, m_packet_length); break; case DTM_PKT_TYPE_VENDORSPECIFIC: // The length field is for indicating the vendor specific command to execute. // The frequency field is used for vendor specific options to the command. return dtm_vendor_specific_pkt(length, freq); default: // Parameter error m_event = LE_TEST_STATUS_EVENT_ERROR; return DTM_ERROR_ILLEGAL_CONFIGURATION; } // Initialize CRC value, set channel: radio_prepare(TX_MODE); // Set the timer to the correct period. The delay between each packet is described in the // Bluetooth Core Spsification version 4.2 Vol. 6 Part F Section 4.1.6. mp_timer->CC[0] = dtm_packet_interval_calculate(m_packet_length, m_radio_mode); // Configure PPI so that timer will activate radio every 625 us NRF_PPI->CH[0].EEP = (uint32_t)&mp_timer->EVENTS_COMPARE[0]; NRF_PPI->CH[0].TEP = (uint32_t)&NRF_RADIO->TASKS_TXEN; NRF_PPI->CHENSET = 0x01; m_state = STATE_TRANSMITTER_TEST; } return DTM_SUCCESS; } bool dtm_event_get(dtm_event_t *p_dtm_event) { bool was_new = m_new_event; // mark the current event as retrieved m_new_event = false; *p_dtm_event = m_event; // return value indicates whether this value was already retrieved. return was_new; } // ================================================================================================= // Configuration functions (only for parameters not definitely determined by the BLE DTM standard). // These functions return true if successful, false if value could not be set /**@brief Function for configuring the output power for transmitter test. This function may be called directly, or through dtm_cmd() specifying DTM_PKT_VENDORSPECIFIC as payload, SET_TX_POWER as length, and the dBm value as frequency. */ bool dtm_set_txpower(uint32_t new_tx_power) { // radio->TXPOWER register is 32 bits, low octet a signed value, upper 24 bits zeroed int8_t new_power8 = (int8_t)(new_tx_power & 0xFF); // The two most significant bits are not sent in the 6 bit field of the DTM command. // These two bits are 1's if and only if the tx_power is a negative number. // All valid negative values have a non zero bit in among the two most significant // of the 6-bit value. // By checking these bits, the two most significant bits can be determined. new_power8 = (new_power8 & 0x30) != 0 ? (new_power8 | 0xC0) : new_power8; if (m_state > STATE_IDLE) { // radio must be idle to change the tx power return false; } if (dtm_radio_validate(new_power8, m_radio_mode) != DTM_SUCCESS) { return false; } m_tx_power = new_power8; return true; } /**@brief Function for selecting a timer resource. * This function may be called directly, or through dtm_cmd() specifying * DTM_PKT_VENDORSPECIFIC as payload, SELECT_TIMER as length, and the timer as freq * * @param[in] new_timer Timer id for the timer to use: 0, 1, or 2. * * @return true if the timer was successfully changed, false otherwise. */ bool dtm_set_timer(uint32_t new_timer) { if (m_state > STATE_IDLE) { return false; } return dtm_hw_set_timer(&mp_timer, &m_timer_irq, new_timer); } /// @} #endif // NRF_MODULE_ENABLED(BLE_DTM)