/** * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_UART_H__ #define NRF_UART_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_uart_hal UART HAL * @{ * @ingroup nrf_uart * @brief Hardware access layer for managing the UART peripheral. */ #define NRF_UART_PSEL_DISCONNECTED 0xFFFFFFFF /** * @enum nrf_uart_task_t * @brief UART tasks. */ typedef enum { /*lint -save -e30 -esym(628,__INTADDR__)*/ NRF_UART_TASK_STARTRX = offsetof(NRF_UART_Type, TASKS_STARTRX), /**< Task for starting reception. */ NRF_UART_TASK_STOPRX = offsetof(NRF_UART_Type, TASKS_STOPRX), /**< Task for stopping reception. */ NRF_UART_TASK_STARTTX = offsetof(NRF_UART_Type, TASKS_STARTTX), /**< Task for starting transmission. */ NRF_UART_TASK_STOPTX = offsetof(NRF_UART_Type, TASKS_STOPTX), /**< Task for stopping transmission. */ NRF_UART_TASK_SUSPEND = offsetof(NRF_UART_Type, TASKS_SUSPEND), /**< Task for suspending UART. */ /*lint -restore*/ } nrf_uart_task_t; /** * @enum nrf_uart_event_t * @brief UART events. */ typedef enum { /*lint -save -e30*/ NRF_UART_EVENT_CTS = offsetof(NRF_UART_Type, EVENTS_CTS), /**< Event from CTS line activation. */ NRF_UART_EVENT_NCTS = offsetof(NRF_UART_Type, EVENTS_NCTS), /**< Event from CTS line deactivation. */ NRF_UART_EVENT_RXDRDY = offsetof(NRF_UART_Type, EVENTS_RXDRDY),/**< Event from data ready in RXD. */ NRF_UART_EVENT_TXDRDY = offsetof(NRF_UART_Type, EVENTS_TXDRDY),/**< Event from data sent from TXD. */ NRF_UART_EVENT_ERROR = offsetof(NRF_UART_Type, EVENTS_ERROR), /**< Event from error detection. */ NRF_UART_EVENT_RXTO = offsetof(NRF_UART_Type, EVENTS_RXTO) /**< Event from receiver timeout. */ /*lint -restore*/ } nrf_uart_event_t; /** * @enum nrf_uart_int_mask_t * @brief UART interrupts. */ typedef enum { /*lint -save -e30*/ NRF_UART_INT_MASK_CTS = UART_INTENCLR_CTS_Msk, /**< CTS line activation interrupt. */ NRF_UART_INT_MASK_NCTS = UART_INTENCLR_NCTS_Msk, /**< CTS line deactivation interrupt. */ NRF_UART_INT_MASK_RXDRDY = UART_INTENCLR_RXDRDY_Msk, /**< Data ready in RXD interrupt. */ NRF_UART_INT_MASK_TXDRDY = UART_INTENCLR_TXDRDY_Msk, /**< Data sent from TXD interrupt. */ NRF_UART_INT_MASK_ERROR = UART_INTENCLR_ERROR_Msk, /**< Error detection interrupt. */ NRF_UART_INT_MASK_RXTO = UART_INTENCLR_RXTO_Msk /**< Receiver timeout interrupt. */ /*lint -restore*/ } nrf_uart_int_mask_t; /** * @enum nrf_uart_baudrate_t * @brief Baudrates supported by UART. */ typedef enum { NRF_UART_BAUDRATE_1200 = UART_BAUDRATE_BAUDRATE_Baud1200, /**< 1200 baud. */ NRF_UART_BAUDRATE_2400 = UART_BAUDRATE_BAUDRATE_Baud2400, /**< 2400 baud. */ NRF_UART_BAUDRATE_4800 = UART_BAUDRATE_BAUDRATE_Baud4800, /**< 4800 baud. */ NRF_UART_BAUDRATE_9600 = UART_BAUDRATE_BAUDRATE_Baud9600, /**< 9600 baud. */ NRF_UART_BAUDRATE_14400 = UART_BAUDRATE_BAUDRATE_Baud14400, /**< 14400 baud. */ NRF_UART_BAUDRATE_19200 = UART_BAUDRATE_BAUDRATE_Baud19200, /**< 19200 baud. */ NRF_UART_BAUDRATE_28800 = UART_BAUDRATE_BAUDRATE_Baud28800, /**< 28800 baud. */ NRF_UART_BAUDRATE_31250 = UART_BAUDRATE_BAUDRATE_Baud31250, /**< 31250 baud. */ NRF_UART_BAUDRATE_38400 = UART_BAUDRATE_BAUDRATE_Baud38400, /**< 38400 baud. */ NRF_UART_BAUDRATE_56000 = UART_BAUDRATE_BAUDRATE_Baud56000, /**< 56000 baud. */ NRF_UART_BAUDRATE_57600 = UART_BAUDRATE_BAUDRATE_Baud57600, /**< 57600 baud. */ NRF_UART_BAUDRATE_76800 = UART_BAUDRATE_BAUDRATE_Baud76800, /**< 76800 baud. */ NRF_UART_BAUDRATE_115200 = UART_BAUDRATE_BAUDRATE_Baud115200, /**< 115200 baud. */ NRF_UART_BAUDRATE_230400 = UART_BAUDRATE_BAUDRATE_Baud230400, /**< 230400 baud. */ NRF_UART_BAUDRATE_250000 = UART_BAUDRATE_BAUDRATE_Baud250000, /**< 250000 baud. */ NRF_UART_BAUDRATE_460800 = UART_BAUDRATE_BAUDRATE_Baud460800, /**< 460800 baud. */ NRF_UART_BAUDRATE_921600 = UART_BAUDRATE_BAUDRATE_Baud921600, /**< 921600 baud. */ NRF_UART_BAUDRATE_1000000 = UART_BAUDRATE_BAUDRATE_Baud1M, /**< 1000000 baud. */ } nrf_uart_baudrate_t; /** * @enum nrf_uart_error_mask_t * @brief Types of UART error masks. */ typedef enum { NRF_UART_ERROR_OVERRUN_MASK = UART_ERRORSRC_OVERRUN_Msk, /**< Overrun error. */ NRF_UART_ERROR_PARITY_MASK = UART_ERRORSRC_PARITY_Msk, /**< Parity error. */ NRF_UART_ERROR_FRAMING_MASK = UART_ERRORSRC_FRAMING_Msk, /**< Framing error. */ NRF_UART_ERROR_BREAK_MASK = UART_ERRORSRC_BREAK_Msk, /**< Break error. */ } nrf_uart_error_mask_t; /** * @enum nrf_uart_parity_t * @brief Types of UART parity modes. */ typedef enum { NRF_UART_PARITY_EXCLUDED = UART_CONFIG_PARITY_Excluded << UART_CONFIG_PARITY_Pos, /**< Parity excluded. */ NRF_UART_PARITY_INCLUDED = UART_CONFIG_PARITY_Included << UART_CONFIG_PARITY_Pos, /**< Parity included. */ } nrf_uart_parity_t; /** * @enum nrf_uart_hwfc_t * @brief Types of UART flow control modes. */ typedef enum { NRF_UART_HWFC_DISABLED = UART_CONFIG_HWFC_Disabled, /**< HW flow control disabled. */ NRF_UART_HWFC_ENABLED = UART_CONFIG_HWFC_Enabled, /**< HW flow control enabled. */ } nrf_uart_hwfc_t; /** * @brief Function for clearing a specific UART event. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] event Event to clear. */ __STATIC_INLINE void nrf_uart_event_clear(NRF_UART_Type * p_reg, nrf_uart_event_t event); /** * @brief Function for checking the state of a specific UART event. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] event Event to check. * * @retval True if event is set, False otherwise. */ __STATIC_INLINE bool nrf_uart_event_check(NRF_UART_Type * p_reg, nrf_uart_event_t event); /** * @brief Function for returning the address of a specific UART event register. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] event Desired event. * * @retval Address of specified event register. */ __STATIC_INLINE uint32_t nrf_uart_event_address_get(NRF_UART_Type * p_reg, nrf_uart_event_t event); /** * @brief Function for enabling a specific interrupt. * * @param p_reg Pointer to the peripheral registers structure. * @param int_mask Interrupts to enable. */ __STATIC_INLINE void nrf_uart_int_enable(NRF_UART_Type * p_reg, uint32_t int_mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param p_reg Pointer to the peripheral registers structure. * @param int_mask Mask of interrupt to check. * * @retval true If the interrupt is enabled. * @retval false If the interrupt is not enabled. */ __STATIC_INLINE bool nrf_uart_int_enable_check(NRF_UART_Type * p_reg, uint32_t int_mask); /** * @brief Function for disabling specific interrupts. * * @param p_reg Pointer to the peripheral registers structure. * @param int_mask Interrupts to disable. */ __STATIC_INLINE void nrf_uart_int_disable(NRF_UART_Type * p_reg, uint32_t int_mask); /** * @brief Function for getting error source mask. Function is clearing error source flags after reading. * * @param p_reg Pointer to the peripheral registers structure. * @return Mask with error source flags. */ __STATIC_INLINE uint32_t nrf_uart_errorsrc_get_and_clear(NRF_UART_Type * p_reg); /** * @brief Function for enabling UART. * * @param p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE void nrf_uart_enable(NRF_UART_Type * p_reg); /** * @brief Function for disabling UART. * * @param p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE void nrf_uart_disable(NRF_UART_Type * p_reg); /** * @brief Function for configuring TX/RX pins. * * @param p_reg Pointer to the peripheral registers structure. * @param pseltxd TXD pin number. * @param pselrxd RXD pin number. */ __STATIC_INLINE void nrf_uart_txrx_pins_set(NRF_UART_Type * p_reg, uint32_t pseltxd, uint32_t pselrxd); /** * @brief Function for disconnecting TX/RX pins. * * @param p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE void nrf_uart_txrx_pins_disconnect(NRF_UART_Type * p_reg); /** * @brief Function for getting TX pin. * * @param p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE uint32_t nrf_uart_tx_pin_get(NRF_UART_Type * p_reg); /** * @brief Function for getting RX pin. * * @param p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE uint32_t nrf_uart_rx_pin_get(NRF_UART_Type * p_reg); /** * @brief Function for getting RTS pin. * * @param p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE uint32_t nrf_uart_rts_pin_get(NRF_UART_Type * p_reg); /** * @brief Function for getting CTS pin. * * @param p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE uint32_t nrf_uart_cts_pin_get(NRF_UART_Type * p_reg); /** * @brief Function for configuring flow control pins. * * @param p_reg Pointer to the peripheral registers structure. * @param pselrts RTS pin number. * @param pselcts CTS pin number. */ __STATIC_INLINE void nrf_uart_hwfc_pins_set(NRF_UART_Type * p_reg, uint32_t pselrts, uint32_t pselcts); /** * @brief Function for disconnecting flow control pins. * * @param p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE void nrf_uart_hwfc_pins_disconnect(NRF_UART_Type * p_reg); /** * @brief Function for reading RX data. * * @param p_reg Pointer to the peripheral registers structure. * @return Received byte. */ __STATIC_INLINE uint8_t nrf_uart_rxd_get(NRF_UART_Type * p_reg); /** * @brief Function for setting Tx data. * * @param p_reg Pointer to the peripheral registers structure. * @param txd Byte. */ __STATIC_INLINE void nrf_uart_txd_set(NRF_UART_Type * p_reg, uint8_t txd); /** * @brief Function for starting an UART task. * * @param p_reg Pointer to the peripheral registers structure. * @param task Task. */ __STATIC_INLINE void nrf_uart_task_trigger(NRF_UART_Type * p_reg, nrf_uart_task_t task); /** * @brief Function for returning the address of a specific task register. * * @param p_reg Pointer to the peripheral registers structure. * @param task Task. * * @return Task address. */ __STATIC_INLINE uint32_t nrf_uart_task_address_get(NRF_UART_Type * p_reg, nrf_uart_task_t task); /** * @brief Function for configuring UART. * * @param p_reg Pointer to the peripheral registers structure. * @param hwfc Hardware flow control. Enabled if true. * @param parity Parity. Included if true. */ __STATIC_INLINE void nrf_uart_configure(NRF_UART_Type * p_reg, nrf_uart_parity_t parity, nrf_uart_hwfc_t hwfc); /** * @brief Function for setting UART baudrate. * * @param p_reg Pointer to the peripheral registers structure. * @param baudrate Baudrate. */ __STATIC_INLINE void nrf_uart_baudrate_set(NRF_UART_Type * p_reg, nrf_uart_baudrate_t baudrate); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_uart_event_clear(NRF_UART_Type * p_reg, nrf_uart_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)); (void)dummy; #endif } __STATIC_INLINE bool nrf_uart_event_check(NRF_UART_Type * p_reg, nrf_uart_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE uint32_t nrf_uart_event_address_get(NRF_UART_Type * p_reg, nrf_uart_event_t event) { return (uint32_t)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE void nrf_uart_int_enable(NRF_UART_Type * p_reg, uint32_t int_mask) { p_reg->INTENSET = int_mask; } __STATIC_INLINE bool nrf_uart_int_enable_check(NRF_UART_Type * p_reg, uint32_t int_mask) { return (bool)(p_reg->INTENSET & int_mask); } __STATIC_INLINE void nrf_uart_int_disable(NRF_UART_Type * p_reg, uint32_t int_mask) { p_reg->INTENCLR = int_mask; } __STATIC_INLINE uint32_t nrf_uart_errorsrc_get_and_clear(NRF_UART_Type * p_reg) { uint32_t errsrc_mask = p_reg->ERRORSRC; p_reg->ERRORSRC = errsrc_mask; return errsrc_mask; } __STATIC_INLINE void nrf_uart_enable(NRF_UART_Type * p_reg) { p_reg->ENABLE = UART_ENABLE_ENABLE_Enabled; } __STATIC_INLINE void nrf_uart_disable(NRF_UART_Type * p_reg) { p_reg->ENABLE = UART_ENABLE_ENABLE_Disabled; } __STATIC_INLINE void nrf_uart_txrx_pins_set(NRF_UART_Type * p_reg, uint32_t pseltxd, uint32_t pselrxd) { #if defined(UART_PSEL_RXD_CONNECT_Pos) p_reg->PSEL.RXD = pselrxd; #else p_reg->PSELRXD = pselrxd; #endif #if defined(UART_PSEL_TXD_CONNECT_Pos) p_reg->PSEL.TXD = pseltxd; #else p_reg->PSELTXD = pseltxd; #endif } __STATIC_INLINE void nrf_uart_txrx_pins_disconnect(NRF_UART_Type * p_reg) { nrf_uart_txrx_pins_set(p_reg, NRF_UART_PSEL_DISCONNECTED, NRF_UART_PSEL_DISCONNECTED); } __STATIC_INLINE uint32_t nrf_uart_tx_pin_get(NRF_UART_Type * p_reg) { #if defined(UART_PSEL_TXD_CONNECT_Pos) return p_reg->PSEL.TXD; #else return p_reg->PSELTXD; #endif } __STATIC_INLINE uint32_t nrf_uart_rx_pin_get(NRF_UART_Type * p_reg) { #if defined(UART_PSEL_RXD_CONNECT_Pos) return p_reg->PSEL.RXD; #else return p_reg->PSELRXD; #endif } __STATIC_INLINE uint32_t nrf_uart_rts_pin_get(NRF_UART_Type * p_reg) { #if defined(UART_PSEL_RTS_CONNECT_Pos) return p_reg->PSEL.RTS; #else return p_reg->PSELRTS; #endif } __STATIC_INLINE uint32_t nrf_uart_cts_pin_get(NRF_UART_Type * p_reg) { #if defined(UART_PSEL_RTS_CONNECT_Pos) return p_reg->PSEL.CTS; #else return p_reg->PSELCTS; #endif } __STATIC_INLINE void nrf_uart_hwfc_pins_set(NRF_UART_Type * p_reg, uint32_t pselrts, uint32_t pselcts) { #if defined(UART_PSEL_RTS_CONNECT_Pos) p_reg->PSEL.RTS = pselrts; #else p_reg->PSELRTS = pselrts; #endif #if defined(UART_PSEL_RTS_CONNECT_Pos) p_reg->PSEL.CTS = pselcts; #else p_reg->PSELCTS = pselcts; #endif } __STATIC_INLINE void nrf_uart_hwfc_pins_disconnect(NRF_UART_Type * p_reg) { nrf_uart_hwfc_pins_set(p_reg, NRF_UART_PSEL_DISCONNECTED, NRF_UART_PSEL_DISCONNECTED); } __STATIC_INLINE uint8_t nrf_uart_rxd_get(NRF_UART_Type * p_reg) { return p_reg->RXD; } __STATIC_INLINE void nrf_uart_txd_set(NRF_UART_Type * p_reg, uint8_t txd) { p_reg->TXD = txd; } __STATIC_INLINE void nrf_uart_task_trigger(NRF_UART_Type * p_reg, nrf_uart_task_t task) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE uint32_t nrf_uart_task_address_get(NRF_UART_Type * p_reg, nrf_uart_task_t task) { return (uint32_t)p_reg + (uint32_t)task; } __STATIC_INLINE void nrf_uart_configure(NRF_UART_Type * p_reg, nrf_uart_parity_t parity, nrf_uart_hwfc_t hwfc) { p_reg->CONFIG = (uint32_t)parity | (uint32_t)hwfc; } __STATIC_INLINE void nrf_uart_baudrate_set(NRF_UART_Type * p_reg, nrf_uart_baudrate_t baudrate) { p_reg->BAUDRATE = baudrate; } #endif //SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif //NRF_UART_H__