/* * This file is part of the OpenMV project. * Copyright (c) 2013/2014 Ibrahim Abdelkader * This work is licensed under the MIT license, see the file LICENSE for details. * * OV7725 driver. * */ #include #include #include #include #include "sccb.h" #include "xclk.h" #include "ov7725.h" #include "ov7725_regs.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG) #include "esp32-hal-log.h" #else #include "esp_log.h" static const char* TAG = "ov7725"; #endif static const uint8_t default_regs[][2] = { {COM3, COM3_SWAP_YUV}, {COM7, COM7_RES_QVGA | COM7_FMT_YUV}, {COM4, 0x01 | 0x00}, /* bypass PLL (0x00:off, 0x40:4x, 0x80:6x, 0xC0:8x) */ {CLKRC, 0x80 | 0x03}, /* Res/Bypass pre-scalar (0x40:bypass, 0x00-0x3F:prescaler PCLK=XCLK/(prescaler + 1)/2 ) */ // QVGA Window Size {HSTART, 0x3F}, {HSIZE, 0x50}, {VSTART, 0x03}, {VSIZE, 0x78}, {HREF, 0x00}, // Scale down to QVGA Resolution {HOUTSIZE, 0x50}, {VOUTSIZE, 0x78}, {EXHCH, 0x00}, {COM12, 0x03}, {TGT_B, 0x7F}, {FIXGAIN, 0x09}, {AWB_CTRL0, 0xE0}, {DSP_CTRL1, 0xFF}, {DSP_CTRL2, DSP_CTRL2_VDCW_EN | DSP_CTRL2_HDCW_EN | DSP_CTRL2_HZOOM_EN | DSP_CTRL2_VZOOM_EN}, {DSP_CTRL3, 0x00}, {DSP_CTRL4, 0x00}, {DSPAUTO, 0xFF}, {COM8, 0xF0}, {COM6, 0xC5}, {COM9, 0x11}, {COM10, COM10_VSYNC_NEG | COM10_PCLK_FREE}, //Invert VSYNC and MASK PCLK {BDBASE, 0x7F}, {DBSTEP, 0x03}, {AEW, 0x75}, {AEB, 0x64}, {VPT, 0xA1}, {EXHCL, 0x00}, {AWB_CTRL3, 0xAA}, {COM8, 0xFF}, //Gamma {GAM1, 0x0C}, {GAM2, 0x16}, {GAM3, 0x2A}, {GAM4, 0x4E}, {GAM5, 0x61}, {GAM6, 0x6F}, {GAM7, 0x7B}, {GAM8, 0x86}, {GAM9, 0x8E}, {GAM10, 0x97}, {GAM11, 0xA4}, {GAM12, 0xAF}, {GAM13, 0xC5}, {GAM14, 0xD7}, {GAM15, 0xE8}, {SLOP, 0x20}, {EDGE1, 0x05}, {EDGE2, 0x03}, {EDGE3, 0x00}, {DNSOFF, 0x01}, {MTX1, 0xB0}, {MTX2, 0x9D}, {MTX3, 0x13}, {MTX4, 0x16}, {MTX5, 0x7B}, {MTX6, 0x91}, {MTX_CTRL, 0x1E}, {BRIGHTNESS, 0x08}, {CONTRAST, 0x30}, {UVADJ0, 0x81}, {SDE, (SDE_CONT_BRIGHT_EN | SDE_SATURATION_EN)}, // For 30 fps/60Hz {DM_LNL, 0x00}, {DM_LNH, 0x00}, {BDBASE, 0x7F}, {DBSTEP, 0x03}, // Lens Correction, should be tuned with real camera module {LC_RADI, 0x10}, {LC_COEF, 0x10}, {LC_COEFB, 0x14}, {LC_COEFR, 0x17}, {LC_CTR, 0x05}, {COM5, 0xF5}, //0x65 {0x00, 0x00}, }; static int get_reg(sensor_t *sensor, int reg, int mask) { int ret = SCCB_Read(sensor->slv_addr, reg & 0xFF); if(ret > 0){ ret &= mask; } return ret; } static int set_reg(sensor_t *sensor, int reg, int mask, int value) { int ret = 0; ret = SCCB_Read(sensor->slv_addr, reg & 0xFF); if(ret < 0){ return ret; } value = (ret & ~mask) | (value & mask); ret = SCCB_Write(sensor->slv_addr, reg & 0xFF, value); return ret; } static int set_reg_bits(sensor_t *sensor, uint8_t reg, uint8_t offset, uint8_t length, uint8_t value) { int ret = 0; ret = SCCB_Read(sensor->slv_addr, reg); if(ret < 0){ return ret; } uint8_t mask = ((1 << length) - 1) << offset; value = (ret & ~mask) | ((value << offset) & mask); ret = SCCB_Write(sensor->slv_addr, reg & 0xFF, value); return ret; } static int get_reg_bits(sensor_t *sensor, uint8_t reg, uint8_t offset, uint8_t length) { int ret = 0; ret = SCCB_Read(sensor->slv_addr, reg); if(ret < 0){ return ret; } uint8_t mask = ((1 << length) - 1) << offset; return (ret & mask) >> offset; } static int reset(sensor_t *sensor) { int i=0; const uint8_t (*regs)[2]; // Reset all registers SCCB_Write(sensor->slv_addr, COM7, COM7_RESET); // Delay 10 ms vTaskDelay(10 / portTICK_PERIOD_MS); // Write default regsiters for (i=0, regs = default_regs; regs[i][0]; i++) { SCCB_Write(sensor->slv_addr, regs[i][0], regs[i][1]); } // Delay vTaskDelay(30 / portTICK_PERIOD_MS); return 0; } static int set_pixformat(sensor_t *sensor, pixformat_t pixformat) { int ret=0; sensor->pixformat = pixformat; // Read register COM7 uint8_t reg = SCCB_Read(sensor->slv_addr, COM7); switch (pixformat) { case PIXFORMAT_RGB565: reg = COM7_SET_RGB(reg, COM7_FMT_RGB565); break; case PIXFORMAT_YUV422: case PIXFORMAT_GRAYSCALE: reg = COM7_SET_FMT(reg, COM7_FMT_YUV); break; default: return -1; } // Write back register COM7 ret = SCCB_Write(sensor->slv_addr, COM7, reg); // Delay vTaskDelay(30 / portTICK_PERIOD_MS); return ret; } static int set_framesize(sensor_t *sensor, framesize_t framesize) { int ret=0; if (framesize > FRAMESIZE_VGA) { return -1; } uint16_t w = resolution[framesize].width; uint16_t h = resolution[framesize].height; uint8_t reg = SCCB_Read(sensor->slv_addr, COM7); sensor->status.framesize = framesize; // Write MSBs ret |= SCCB_Write(sensor->slv_addr, HOUTSIZE, w>>2); ret |= SCCB_Write(sensor->slv_addr, VOUTSIZE, h>>1); ret |= SCCB_Write(sensor->slv_addr, HSIZE, w>>2); ret |= SCCB_Write(sensor->slv_addr, VSIZE, h>>1); // Write LSBs ret |= SCCB_Write(sensor->slv_addr, HREF, ((w&0x3) | ((h&0x1) << 2))); if (framesize < FRAMESIZE_VGA) { // Enable auto-scaling/zooming factors ret |= SCCB_Write(sensor->slv_addr, DSPAUTO, 0xFF); ret |= SCCB_Write(sensor->slv_addr, HSTART, 0x3F); ret |= SCCB_Write(sensor->slv_addr, VSTART, 0x03); ret |= SCCB_Write(sensor->slv_addr, COM7, reg | COM7_RES_QVGA); ret |= SCCB_Write(sensor->slv_addr, CLKRC, 0x80 | 0x01); } else { // Disable auto-scaling/zooming factors ret |= SCCB_Write(sensor->slv_addr, DSPAUTO, 0xF3); // Clear auto-scaling/zooming factors ret |= SCCB_Write(sensor->slv_addr, SCAL0, 0x00); ret |= SCCB_Write(sensor->slv_addr, SCAL1, 0x00); ret |= SCCB_Write(sensor->slv_addr, SCAL2, 0x00); ret |= SCCB_Write(sensor->slv_addr, HSTART, 0x23); ret |= SCCB_Write(sensor->slv_addr, VSTART, 0x07); ret |= SCCB_Write(sensor->slv_addr, COM7, reg & ~COM7_RES_QVGA); ret |= SCCB_Write(sensor->slv_addr, CLKRC, 0x80 | 0x03); } // Delay vTaskDelay(30 / portTICK_PERIOD_MS); return ret; } static int set_colorbar(sensor_t *sensor, int enable) { int ret=0; uint8_t reg; sensor->status.colorbar = enable; // Read reg COM3 reg = SCCB_Read(sensor->slv_addr, COM3); // Enable colorbar test pattern output reg = COM3_SET_CBAR(reg, enable); // Write back COM3 ret |= SCCB_Write(sensor->slv_addr, COM3, reg); // Read reg DSP_CTRL3 reg = SCCB_Read(sensor->slv_addr, DSP_CTRL3); // Enable DSP colorbar output reg = DSP_CTRL3_SET_CBAR(reg, enable); // Write back DSP_CTRL3 ret |= SCCB_Write(sensor->slv_addr, DSP_CTRL3, reg); return ret; } static int set_whitebal(sensor_t *sensor, int enable) { if(set_reg_bits(sensor, COM8, 1, 1, enable) >= 0){ sensor->status.awb = !!enable; } return sensor->status.awb; } static int set_gain_ctrl(sensor_t *sensor, int enable) { if(set_reg_bits(sensor, COM8, 2, 1, enable) >= 0){ sensor->status.agc = !!enable; } return sensor->status.agc; } static int set_exposure_ctrl(sensor_t *sensor, int enable) { if(set_reg_bits(sensor, COM8, 0, 1, enable) >= 0){ sensor->status.aec = !!enable; } return sensor->status.aec; } static int set_hmirror(sensor_t *sensor, int enable) { if(set_reg_bits(sensor, COM3, 6, 1, enable) >= 0){ sensor->status.hmirror = !!enable; } return sensor->status.hmirror; } static int set_vflip(sensor_t *sensor, int enable) { if(set_reg_bits(sensor, COM3, 7, 1, enable) >= 0){ sensor->status.vflip = !!enable; } return sensor->status.vflip; } static int set_dcw_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = set_reg_bits(sensor, 0x65, 2, 1, !enable); if (ret == 0) { ESP_LOGD(TAG, "Set dcw to: %d", enable); sensor->status.dcw = enable; } return ret; } static int set_aec2(sensor_t *sensor, int enable) { int ret = 0; ret = set_reg_bits(sensor, COM8, 7, 1, enable); if (ret == 0) { ESP_LOGD(TAG, "Set aec2 to: %d", enable); sensor->status.aec2 = enable; } return ret; } static int set_bpc_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = set_reg_bits(sensor, 0x64, 1, 1, enable); if (ret == 0) { ESP_LOGD(TAG, "Set bpc to: %d", enable); sensor->status.bpc = enable; } return ret; } static int set_wpc_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = set_reg_bits(sensor, 0x64, 0, 1, enable); if (ret == 0) { ESP_LOGD(TAG, "Set wpc to: %d", enable); sensor->status.wpc = enable; } return ret; } static int set_raw_gma_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = set_reg_bits(sensor, 0x64, 2, 1, enable); if (ret == 0) { ESP_LOGD(TAG, "Set raw_gma to: %d", enable); sensor->status.raw_gma = enable; } return ret; } static int set_lenc_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = set_reg_bits(sensor, LC_CTR, 0, 1, enable); if (ret == 0) { ESP_LOGD(TAG, "Set lenc to: %d", enable); sensor->status.lenc = enable; } return ret; } //real gain static int set_agc_gain(sensor_t *sensor, int gain) { int ret = 0; ret = set_reg_bits(sensor, COM9, 4, 3, gain % 5); if (ret == 0) { ESP_LOGD(TAG, "Set gain to: %d", gain); sensor->status.agc_gain = gain; } return ret; } static int set_aec_value(sensor_t *sensor, int value) { int ret = 0; ret = SCCB_Write(sensor->slv_addr, AEC, value & 0xff) | SCCB_Write(sensor->slv_addr, AECH, value >> 8); if (ret == 0) { ESP_LOGD(TAG, "Set aec_value to: %d", value); sensor->status.aec_value = value; } return ret; } static int set_awb_gain_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = set_reg_bits(sensor, 0x63, 7, 1, enable); if (ret == 0) { ESP_LOGD(TAG, "Set awb_gain to: %d", enable); sensor->status.awb_gain = enable; } return ret; } static int set_brightness(sensor_t *sensor, int level) { int ret = 0; ret = SCCB_Write(sensor->slv_addr, 0x9B, level); if (ret == 0) { ESP_LOGD(TAG, "Set brightness to: %d", level); sensor->status.brightness = level; } return ret; } static int set_contrast(sensor_t *sensor, int level) { int ret = 0; ret = SCCB_Write(sensor->slv_addr, 0x9C, level); if (ret == 0) { ESP_LOGD(TAG, "Set contrast to: %d", level); sensor->status.contrast = level; } return ret; } static int init_status(sensor_t *sensor) { sensor->status.brightness = SCCB_Read(sensor->slv_addr, 0x9B); sensor->status.contrast = SCCB_Read(sensor->slv_addr, 0x9C); sensor->status.saturation = 0; sensor->status.ae_level = 0; sensor->status.special_effect = get_reg_bits(sensor, 0x64, 5, 1); sensor->status.wb_mode = get_reg_bits(sensor, 0x6B, 7, 1); sensor->status.agc_gain = get_reg_bits(sensor, COM9, 4, 3); sensor->status.aec_value = SCCB_Read(sensor->slv_addr, AEC) | (SCCB_Read(sensor->slv_addr, AECH) << 8); sensor->status.gainceiling = SCCB_Read(sensor->slv_addr, 0x00); sensor->status.awb = get_reg_bits(sensor, COM8, 1, 1); sensor->status.awb_gain = get_reg_bits(sensor, 0x63, 7, 1); sensor->status.aec = get_reg_bits(sensor, COM8, 0, 1); sensor->status.aec2 = get_reg_bits(sensor, COM8, 7, 1); sensor->status.agc = get_reg_bits(sensor, COM8, 2, 1); sensor->status.bpc = get_reg_bits(sensor, 0x64, 1, 1); sensor->status.wpc = get_reg_bits(sensor, 0x64, 0, 1); sensor->status.raw_gma = get_reg_bits(sensor, 0x64, 2, 1); sensor->status.lenc = get_reg_bits(sensor, LC_CTR, 0, 1); sensor->status.hmirror = get_reg_bits(sensor, COM3, 6, 1); sensor->status.vflip = get_reg_bits(sensor, COM3, 7, 1); sensor->status.dcw = get_reg_bits(sensor, 0x65, 2, 1); sensor->status.colorbar = get_reg_bits(sensor, COM3, 0, 1); sensor->status.sharpness = get_reg_bits(sensor, EDGE0, 0, 5); sensor->status.denoise = SCCB_Read(sensor->slv_addr, 0x8E); return 0; } static int set_dummy(sensor_t *sensor, int val){ return -1; } static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val){ return -1; } static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning){return -1;} static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div){return -1;} static int set_xclk(sensor_t *sensor, int timer, int xclk) { int ret = 0; sensor->xclk_freq_hz = xclk * 1000000U; ret = xclk_timer_conf(timer, sensor->xclk_freq_hz); return ret; } int ov7725_detect(int slv_addr, sensor_id_t *id) { if (OV7725_SCCB_ADDR == slv_addr) { SCCB_Write(slv_addr, 0xFF, 0x01);//bank sensor uint16_t PID = SCCB_Read(slv_addr, 0x0A); if (OV7725_PID == PID) { id->PID = PID; id->VER = SCCB_Read(slv_addr, REG_VER); id->MIDL = SCCB_Read(slv_addr, REG_MIDL); id->MIDH = SCCB_Read(slv_addr, REG_MIDH); return PID; } else { ESP_LOGI(TAG, "Mismatch PID=0x%x", PID); } } return 0; } int ov7725_init(sensor_t *sensor) { // Set function pointers sensor->reset = reset; sensor->init_status = init_status; sensor->set_pixformat = set_pixformat; sensor->set_framesize = set_framesize; sensor->set_colorbar = set_colorbar; sensor->set_whitebal = set_whitebal; sensor->set_gain_ctrl = set_gain_ctrl; sensor->set_exposure_ctrl = set_exposure_ctrl; sensor->set_hmirror = set_hmirror; sensor->set_vflip = set_vflip; sensor->set_brightness = set_brightness; sensor->set_contrast = set_contrast; sensor->set_aec2 = set_aec2; sensor->set_aec_value = set_aec_value; sensor->set_awb_gain = set_awb_gain_dsp; sensor->set_agc_gain = set_agc_gain; sensor->set_dcw = set_dcw_dsp; sensor->set_bpc = set_bpc_dsp; sensor->set_wpc = set_wpc_dsp; sensor->set_raw_gma = set_raw_gma_dsp; sensor->set_lenc = set_lenc_dsp; //not supported sensor->set_saturation= set_dummy; sensor->set_sharpness = set_dummy; sensor->set_denoise = set_dummy; sensor->set_quality = set_dummy; sensor->set_special_effect = set_dummy; sensor->set_wb_mode = set_dummy; sensor->set_ae_level = set_dummy; sensor->set_gainceiling = set_gainceiling_dummy; sensor->get_reg = get_reg; sensor->set_reg = set_reg; sensor->set_res_raw = set_res_raw; sensor->set_pll = _set_pll; sensor->set_xclk = set_xclk; // Retrieve sensor's signature sensor->id.MIDH = SCCB_Read(sensor->slv_addr, REG_MIDH); sensor->id.MIDL = SCCB_Read(sensor->slv_addr, REG_MIDL); sensor->id.PID = SCCB_Read(sensor->slv_addr, REG_PID); sensor->id.VER = SCCB_Read(sensor->slv_addr, REG_VER); ESP_LOGD(TAG, "OV7725 Attached"); return 0; }