/** * Copyright (c) 2018 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_VMC_H__ #define NRF_VMC_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_vmc_hal VMC HAL * @{ * @ingroup nrf_vmc * @brief Hardware access layer for managing the Volatile Memory Controller (VMC) peripheral. */ /** @brief Power configuration bits for each section in particular RAM block. */ typedef enum { NRF_VMC_POWER_S0 = VMC_RAM_POWER_S0POWER_Msk, ///< Keep retention on RAM section S0 of the particular RAM block when RAM section is switched off. NRF_VMC_POWER_S1 = VMC_RAM_POWER_S1POWER_Msk, ///< Keep retention on RAM section S1 of the particular RAM block when RAM section is switched off. NRF_VMC_POWER_S2 = VMC_RAM_POWER_S2POWER_Msk, ///< Keep retention on RAM section S2 of the particular RAM block when RAM section is switched off. NRF_VMC_POWER_S3 = VMC_RAM_POWER_S3POWER_Msk, ///< Keep retention on RAM section S3 of the particular RAM block when RAM section is switched off. } nrf_vmc_power_t; /** @brief Retention configuration bits for each section in particular RAM block. */ typedef enum { NRF_VMC_RETENTION_S0 = VMC_RAM_POWER_S0RETENTION_Msk, ///< Keep RAM section S0 of the particular RAM block on or off in System ON mode. NRF_VMC_RETENTION_S1 = VMC_RAM_POWER_S1RETENTION_Msk, ///< Keep RAM section S1 of the particular RAM block on or off in System ON mode. NRF_VMC_RETENTION_S2 = VMC_RAM_POWER_S2RETENTION_Msk, ///< Keep RAM section S2 of the particular RAM block on or off in System ON mode. NRF_VMC_RETENTION_S3 = VMC_RAM_POWER_S3RETENTION_Msk, ///< Keep RAM section S3 of the particular RAM block on or off in System ON mode. } nrf_vmc_retention_t; /** * @brief Function for setting power configuration for the particular RAM block. * * @note Overrides current configuration. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ram_block_num RAM block number. * @param[in] power_mask Bitmask with sections configuration of particular RAM block. * @ref nrf_vmc_power_t should be use to prepare this bitmask. * @param[in] retention_mask Bitmask with sections configuration of particular RAM block. * @ref nrf_vmc_retention_t should be use to prepare this bitmask. */ __STATIC_INLINE void nrf_vmc_ram_block_config(NRF_VMC_Type * p_reg, uint8_t ram_block_num, uint32_t power_mask, uint32_t retention_mask); /** * @brief Function for clearing power configuration for the particular RAM block. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ram_block_num RAM block number. */ __STATIC_INLINE void nrf_vmc_ram_block_clear(NRF_VMC_Type * p_reg, uint8_t ram_block_num); /** * @brief Function for setting power configuration for the particular RAM block. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ram_block_num RAM block number. * @param[in] sect_power Paricular section of the RAM block. */ __STATIC_INLINE void nrf_vmc_ram_block_power_set(NRF_VMC_Type * p_reg, uint8_t ram_block_num, nrf_vmc_power_t sect_power); /** * @brief Function for clearing power configuration for the particular RAM block. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ram_block_num RAM block number. * @param[in] sect_power Paricular section of the RAM block. */ __STATIC_INLINE void nrf_vmc_ram_block_power_clear(NRF_VMC_Type * p_reg, uint8_t ram_block_num, nrf_vmc_power_t sect_power); /** * @brief Function for getting power configuration of the particular RAM block. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ram_block_num RAM block number. * * @return Bitmask with power configuration of sections of particular RAM block. */ __STATIC_INLINE uint32_t nrf_vmc_ram_block_power_mask_get(NRF_VMC_Type const * p_reg, uint8_t ram_block_num); /** * @brief Function for setting retention configuration for the particular RAM block. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ram_block_num RAM block number. * @param[in] sect_retention Paricular section of the RAM block. */ __STATIC_INLINE void nrf_vmc_ram_block_retention_set(NRF_VMC_Type * p_reg, uint8_t ram_block_num, nrf_vmc_retention_t sect_retention); /** * @brief Function for clearing retention configuration for the particular RAM block. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ram_block_num RAM block number. * @param[in] sect_retention Paricular section of the RAM block. */ __STATIC_INLINE void nrf_vmc_ram_block_retention_clear(NRF_VMC_Type * p_reg, uint8_t ram_block_num, nrf_vmc_retention_t sect_retention); /** * @brief Function for getting retention configuration of the particular RAM block. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ram_block_num RAM block number. * * @return Bitmask with retention configuration of sections of particular RAM block */ __STATIC_INLINE uint32_t nrf_vmc_ram_block_retention_mask_get(NRF_VMC_Type const * p_reg, uint8_t ram_block_num); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_vmc_ram_block_config(NRF_VMC_Type * p_reg, uint8_t ram_block_num, uint32_t power_mask, uint32_t retention_mask) { p_reg->RAM[ram_block_num].POWER = (power_mask & ( VMC_RAM_POWER_S0POWER_Msk | VMC_RAM_POWER_S1POWER_Msk | VMC_RAM_POWER_S2POWER_Msk | VMC_RAM_POWER_S3POWER_Msk)) | (retention_mask & ( VMC_RAM_POWER_S0RETENTION_Msk | VMC_RAM_POWER_S1RETENTION_Msk | VMC_RAM_POWER_S2RETENTION_Msk | VMC_RAM_POWER_S3RETENTION_Msk)); // Perform dummy read of the POWER register to ensure that configuration of sections was // written to the VMC peripheral. volatile uint32_t dummy = p_reg->RAM[ram_block_num].POWER; (void)dummy; } __STATIC_INLINE void nrf_vmc_ram_block_clear(NRF_VMC_Type * p_reg, uint8_t ram_block_num) { p_reg->RAM[ram_block_num].POWER = 0; } __STATIC_INLINE void nrf_vmc_ram_block_power_set(NRF_VMC_Type * p_reg, uint8_t ram_block_num, nrf_vmc_power_t sect_power) { p_reg->RAM[ram_block_num].POWERSET = (uint32_t)sect_power; // Perform dummy read of the POWERSET register to ensure that configuration of sections was // written to the VMC peripheral. volatile uint32_t dummy = p_reg->RAM[ram_block_num].POWERSET; (void)dummy; } __STATIC_INLINE void nrf_vmc_ram_block_power_clear(NRF_VMC_Type * p_reg, uint8_t ram_block_num, nrf_vmc_power_t sect_power) { p_reg->RAM[ram_block_num].POWERCLR = (uint32_t)sect_power; } __STATIC_INLINE uint32_t nrf_vmc_ram_block_power_mask_get(NRF_VMC_Type const * p_reg, uint8_t ram_block_num) { return p_reg->RAM[ram_block_num].POWER & ( VMC_RAM_POWER_S0POWER_Msk | VMC_RAM_POWER_S1POWER_Msk | VMC_RAM_POWER_S2POWER_Msk | VMC_RAM_POWER_S3POWER_Msk); } __STATIC_INLINE void nrf_vmc_ram_block_retention_set(NRF_VMC_Type * p_reg, uint8_t ram_block_num, nrf_vmc_retention_t sect_retention) { p_reg->RAM[ram_block_num].POWERSET = (uint32_t)sect_retention; // Perform dummy read of the POWERSET register to ensure that configuration of sections was // written to the VMC peripheral. volatile uint32_t dummy = p_reg->RAM[ram_block_num].POWERSET; (void)dummy; } __STATIC_INLINE void nrf_vmc_ram_block_retention_clear(NRF_VMC_Type * p_reg, uint8_t ram_block_num, nrf_vmc_retention_t sect_retention) { p_reg->RAM[ram_block_num].POWERCLR = (uint32_t)sect_retention; } __STATIC_INLINE uint32_t nrf_vmc_ram_block_retention_mask_get(NRF_VMC_Type const * p_reg, uint8_t ram_block_num) { return p_reg->RAM[ram_block_num].POWER & ( VMC_RAM_POWER_S0RETENTION_Msk | VMC_RAM_POWER_S1RETENTION_Msk | VMC_RAM_POWER_S2RETENTION_Msk | VMC_RAM_POWER_S3RETENTION_Msk); } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif // NRF_VMC_H__