/** * Copyright (c) 2017 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_USBD_H__ #define NRF_USBD_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_usbd_hal USBD HAL * @{ * @ingroup nrf_usbd * @brief Hardware access layer for managing the Universal Serial Bus Device (USBD) * peripheral. */ /** @brief USBD tasks. */ typedef enum { NRF_USBD_TASK_STARTEPIN0 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[0] ), /**< Captures the EPIN[0].PTR, EPIN[0].MAXCNT, and EPIN[0].CONFIG registers values, and enables control endpoint IN 0 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPIN1 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[1] ), /**< Captures the EPIN[1].PTR, EPIN[1].MAXCNT, and EPIN[1].CONFIG registers values, and enables data endpoint IN 1 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPIN2 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[2] ), /**< Captures the EPIN[2].PTR, EPIN[2].MAXCNT, and EPIN[2].CONFIG registers values, and enables data endpoint IN 2 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPIN3 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[3] ), /**< Captures the EPIN[3].PTR, EPIN[3].MAXCNT, and EPIN[3].CONFIG registers values, and enables data endpoint IN 3 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPIN4 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[4] ), /**< Captures the EPIN[4].PTR, EPIN[4].MAXCNT, and EPIN[4].CONFIG registers values, and enables data endpoint IN 4 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPIN5 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[5] ), /**< Captures the EPIN[5].PTR, EPIN[5].MAXCNT, and EPIN[5].CONFIG registers values, and enables data endpoint IN 5 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPIN6 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[6] ), /**< Captures the EPIN[6].PTR, EPIN[6].MAXCNT, and EPIN[6].CONFIG registers values, and enables data endpoint IN 6 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPIN7 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[7] ), /**< Captures the EPIN[7].PTR, EPIN[7].MAXCNT, and EPIN[7].CONFIG registers values, and enables data endpoint IN 7 to respond to traffic from host. */ NRF_USBD_TASK_STARTISOIN = offsetof(NRF_USBD_Type, TASKS_STARTISOIN ), /**< Captures the ISOIN.PTR, ISOIN.MAXCNT, and ISOIN.CONFIG registers values, and enables sending data on ISO endpoint 8. */ NRF_USBD_TASK_STARTEPOUT0 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[0]), /**< Captures the EPOUT[0].PTR, EPOUT[0].MAXCNT, and EPOUT[0].CONFIG registers values, and enables control endpoint 0 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPOUT1 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[1]), /**< Captures the EPOUT[1].PTR, EPOUT[1].MAXCNT, and EPOUT[1].CONFIG registers values, and enables data endpoint 1 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPOUT2 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[2]), /**< Captures the EPOUT[2].PTR, EPOUT[2].MAXCNT, and EPOUT[2].CONFIG registers values, and enables data endpoint 2 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPOUT3 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[3]), /**< Captures the EPOUT[3].PTR, EPOUT[3].MAXCNT, and EPOUT[3].CONFIG registers values, and enables data endpoint 3 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPOUT4 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[4]), /**< Captures the EPOUT[4].PTR, EPOUT[4].MAXCNT, and EPOUT[4].CONFIG registers values, and enables data endpoint 4 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPOUT5 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[5]), /**< Captures the EPOUT[5].PTR, EPOUT[5].MAXCNT, and EPOUT[5].CONFIG registers values, and enables data endpoint 5 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPOUT6 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[6]), /**< Captures the EPOUT[6].PTR, EPOUT[6].MAXCNT, and EPOUT[6].CONFIG registers values, and enables data endpoint 6 to respond to traffic from host. */ NRF_USBD_TASK_STARTEPOUT7 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[7]), /**< Captures the EPOUT[7].PTR, EPOUT[7].MAXCNT, and EPOUT[7].CONFIG registers values, and enables data endpoint 7 to respond to traffic from host. */ NRF_USBD_TASK_STARTISOOUT = offsetof(NRF_USBD_Type, TASKS_STARTISOOUT ), /**< Captures the ISOOUT.PTR, ISOOUT.MAXCNT, and ISOOUT.CONFIG registers values, and enables receiving of data on ISO endpoint 8. */ NRF_USBD_TASK_EP0RCVOUT = offsetof(NRF_USBD_Type, TASKS_EP0RCVOUT ), /**< Allows OUT data stage on the control endpoint 0. */ NRF_USBD_TASK_EP0STATUS = offsetof(NRF_USBD_Type, TASKS_EP0STATUS ), /**< Allows status stage on the control endpoint 0. */ NRF_USBD_TASK_EP0STALL = offsetof(NRF_USBD_Type, TASKS_EP0STALL ), /**< STALLs data and status stage on the control endpoint 0. */ NRF_USBD_TASK_DRIVEDPDM = offsetof(NRF_USBD_Type, TASKS_DPDMDRIVE ), /**< Forces D+ and D-lines to the state defined in the DPDMVALUE register. */ NRF_USBD_TASK_NODRIVEDPDM = offsetof(NRF_USBD_Type, TASKS_DPDMNODRIVE ), /**< Stops forcing D+ and D- lines to any state (USB engine takes control). */ }nrf_usbd_task_t; /** @brief USBD events. */ typedef enum { NRF_USBD_EVENT_USBRESET = offsetof(NRF_USBD_Type, EVENTS_USBRESET ), /**< Signals that a USB reset condition is detected on the USB lines. */ NRF_USBD_EVENT_STARTED = offsetof(NRF_USBD_Type, EVENTS_STARTED ), /**< Confirms that the EPIN[n].PTR, EPIN[n].MAXCNT, EPIN[n].CONFIG, or EPOUT[n].PTR, EPOUT[n].MAXCNT, and EPOUT[n].CONFIG registers have been captured on all endpoints reported in the EPSTATUS register. */ NRF_USBD_EVENT_ENDEPIN0 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[0] ), /**< The whole EPIN[0] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPIN1 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[1] ), /**< The whole EPIN[1] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPIN2 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[2] ), /**< The whole EPIN[2] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPIN3 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[3] ), /**< The whole EPIN[3] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPIN4 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[4] ), /**< The whole EPIN[4] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPIN5 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[5] ), /**< The whole EPIN[5] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPIN6 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[6] ), /**< The whole EPIN[6] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPIN7 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[7] ), /**< The whole EPIN[7] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_EP0DATADONE = offsetof(NRF_USBD_Type, EVENTS_EP0DATADONE), /**< An acknowledged data transfer has taken place on the control endpoint. */ NRF_USBD_EVENT_ENDISOIN0 = offsetof(NRF_USBD_Type, EVENTS_ENDISOIN ), /**< The whole ISOIN buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPOUT0 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[0]), /**< The whole EPOUT[0] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPOUT1 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[1]), /**< The whole EPOUT[1] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPOUT2 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[2]), /**< The whole EPOUT[2] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPOUT3 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[3]), /**< The whole EPOUT[3] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPOUT4 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[4]), /**< The whole EPOUT[4] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPOUT5 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[5]), /**< The whole EPOUT[5] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPOUT6 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[6]), /**< The whole EPOUT[6] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDEPOUT7 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[7]), /**< The whole EPOUT[7] buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_ENDISOOUT0 = offsetof(NRF_USBD_Type, EVENTS_ENDISOOUT ), /**< The whole ISOOUT buffer has been consumed. The RAM buffer can be accessed safely by software. */ NRF_USBD_EVENT_SOF = offsetof(NRF_USBD_Type, EVENTS_SOF ), /**< Signals that a SOF (start of frame) condition has been detected on the USB lines. */ NRF_USBD_EVENT_USBEVENT = offsetof(NRF_USBD_Type, EVENTS_USBEVENT ), /**< An event or an error not covered by the specified events has occurred, check EVENTCAUSE register to find the cause. */ NRF_USBD_EVENT_EP0SETUP = offsetof(NRF_USBD_Type, EVENTS_EP0SETUP ), /**< A valid SETUP token has been received (and acknowledged) on the control endpoint. */ NRF_USBD_EVENT_DATAEP = offsetof(NRF_USBD_Type, EVENTS_EPDATA ), /**< A data transfer has occurred on a data endpoint, indicated by the EPDATASTATUS register. */ }nrf_usbd_event_t; /** @brief USBD shorts. */ typedef enum { NRF_USBD_SHORT_EP0DATADONE_STARTEPIN0_MASK = USBD_SHORTS_EP0DATADONE_STARTEPIN0_Msk , /**< Shortcut between EP0DATADONE event and STARTEPIN0 task. */ NRF_USBD_SHORT_EP0DATADONE_STARTEPOUT0_MASK = USBD_SHORTS_EP0DATADONE_STARTEPOUT0_Msk, /**< Shortcut between EP0DATADONE event and STARTEPOUT0 task. */ NRF_USBD_SHORT_EP0DATADONE_EP0STATUS_MASK = USBD_SHORTS_EP0DATADONE_EP0STATUS_Msk , /**< Shortcut between EP0DATADONE event and EP0STATUS task. */ NRF_USBD_SHORT_ENDEPOUT0_EP0STATUS_MASK = USBD_SHORTS_ENDEPOUT0_EP0STATUS_Msk , /**< Shortcut between ENDEPOUT[0] event and EP0STATUS task. */ NRF_USBD_SHORT_ENDEPOUT0_EP0RCVOUT_MASK = USBD_SHORTS_ENDEPOUT0_EP0RCVOUT_Msk , /**< Shortcut between ENDEPOUT[0] event and EP0RCVOUT task. */ }nrf_usbd_short_mask_t; /** @brief USBD interrupts. */ typedef enum { NRF_USBD_INT_USBRESET_MASK = USBD_INTEN_USBRESET_Msk , /**< Enable or disable interrupt for USBRESET event. */ NRF_USBD_INT_STARTED_MASK = USBD_INTEN_STARTED_Msk , /**< Enable or disable interrupt for STARTED event. */ NRF_USBD_INT_ENDEPIN0_MASK = USBD_INTEN_ENDEPIN0_Msk , /**< Enable or disable interrupt for ENDEPIN[0] event. */ NRF_USBD_INT_ENDEPIN1_MASK = USBD_INTEN_ENDEPIN1_Msk , /**< Enable or disable interrupt for ENDEPIN[1] event. */ NRF_USBD_INT_ENDEPIN2_MASK = USBD_INTEN_ENDEPIN2_Msk , /**< Enable or disable interrupt for ENDEPIN[2] event. */ NRF_USBD_INT_ENDEPIN3_MASK = USBD_INTEN_ENDEPIN3_Msk , /**< Enable or disable interrupt for ENDEPIN[3] event. */ NRF_USBD_INT_ENDEPIN4_MASK = USBD_INTEN_ENDEPIN4_Msk , /**< Enable or disable interrupt for ENDEPIN[4] event. */ NRF_USBD_INT_ENDEPIN5_MASK = USBD_INTEN_ENDEPIN5_Msk , /**< Enable or disable interrupt for ENDEPIN[5] event. */ NRF_USBD_INT_ENDEPIN6_MASK = USBD_INTEN_ENDEPIN6_Msk , /**< Enable or disable interrupt for ENDEPIN[6] event. */ NRF_USBD_INT_ENDEPIN7_MASK = USBD_INTEN_ENDEPIN7_Msk , /**< Enable or disable interrupt for ENDEPIN[7] event. */ NRF_USBD_INT_EP0DATADONE_MASK = USBD_INTEN_EP0DATADONE_Msk, /**< Enable or disable interrupt for EP0DATADONE event. */ NRF_USBD_INT_ENDISOIN0_MASK = USBD_INTEN_ENDISOIN_Msk , /**< Enable or disable interrupt for ENDISOIN[0] event. */ NRF_USBD_INT_ENDEPOUT0_MASK = USBD_INTEN_ENDEPOUT0_Msk , /**< Enable or disable interrupt for ENDEPOUT[0] event. */ NRF_USBD_INT_ENDEPOUT1_MASK = USBD_INTEN_ENDEPOUT1_Msk , /**< Enable or disable interrupt for ENDEPOUT[1] event. */ NRF_USBD_INT_ENDEPOUT2_MASK = USBD_INTEN_ENDEPOUT2_Msk , /**< Enable or disable interrupt for ENDEPOUT[2] event. */ NRF_USBD_INT_ENDEPOUT3_MASK = USBD_INTEN_ENDEPOUT3_Msk , /**< Enable or disable interrupt for ENDEPOUT[3] event. */ NRF_USBD_INT_ENDEPOUT4_MASK = USBD_INTEN_ENDEPOUT4_Msk , /**< Enable or disable interrupt for ENDEPOUT[4] event. */ NRF_USBD_INT_ENDEPOUT5_MASK = USBD_INTEN_ENDEPOUT5_Msk , /**< Enable or disable interrupt for ENDEPOUT[5] event. */ NRF_USBD_INT_ENDEPOUT6_MASK = USBD_INTEN_ENDEPOUT6_Msk , /**< Enable or disable interrupt for ENDEPOUT[6] event. */ NRF_USBD_INT_ENDEPOUT7_MASK = USBD_INTEN_ENDEPOUT7_Msk , /**< Enable or disable interrupt for ENDEPOUT[7] event. */ NRF_USBD_INT_ENDISOOUT0_MASK = USBD_INTEN_ENDISOOUT_Msk , /**< Enable or disable interrupt for ENDISOOUT[0] event. */ NRF_USBD_INT_SOF_MASK = USBD_INTEN_SOF_Msk , /**< Enable or disable interrupt for SOF event. */ NRF_USBD_INT_USBEVENT_MASK = USBD_INTEN_USBEVENT_Msk , /**< Enable or disable interrupt for USBEVENT event. */ NRF_USBD_INT_EP0SETUP_MASK = USBD_INTEN_EP0SETUP_Msk , /**< Enable or disable interrupt for EP0SETUP event. */ NRF_USBD_INT_DATAEP_MASK = USBD_INTEN_EPDATA_Msk , /**< Enable or disable interrupt for EPDATA event. */ }nrf_usbd_int_mask_t; /** * @brief Function for activating the specified USBD task. * * @param[in] task Task to be activated. */ __STATIC_INLINE void nrf_usbd_task_trigger(nrf_usbd_task_t task); /** * @brief Function for returning the address of the specified USBD task register. * * @param task Task. * * @return Task address. */ __STATIC_INLINE uint32_t nrf_usbd_task_address_get(nrf_usbd_task_t task); /** * @brief Function for clearing the specified event. * * @param event Event. */ __STATIC_INLINE void nrf_usbd_event_clear(nrf_usbd_event_t event); /** * @brief Function for retrieving the state of the USBD event. * * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ __STATIC_INLINE bool nrf_usbd_event_check(nrf_usbd_event_t event); /** * @brief Function for getting and clearing the state of the specified event. * * This function checks the state of the event and clears it. * * @param event Event. * * @retval true The event was set. * @retval false The event was not set. */ __STATIC_INLINE bool nrf_usbd_event_get_and_clear(nrf_usbd_event_t event); /** * @brief Function for returning the address of the specified USBD event register. * * @param event Event. * * @return Address. */ __STATIC_INLINE uint32_t nrf_usbd_event_address_get(nrf_usbd_event_t event); /** * @brief Function for setting shortcuts. * * @param mask Shortcut mask. */ __STATIC_INLINE void nrf_usbd_shorts_enable(uint32_t mask); /** * @brief Function for clearing shortcuts. * * @param mask Shortcut mask. */ __STATIC_INLINE void nrf_usbd_shorts_disable(uint32_t mask); /** * @brief Function for getting the shortcut mask. * * Function returns shortcut register. * * @return Flags of the currently enabled shortcuts. */ __STATIC_INLINE uint32_t nrf_usbd_shorts_get(void); /** * @brief Function for enabling the selected interrupts. * * @param mask Mask of interrupts to be enabled. */ __STATIC_INLINE void nrf_usbd_int_enable(uint32_t mask); /** * @brief Function for retrieving the state of the selected interrupts. * * @param mask Mask of interrupts to be checked. * * @retval true Any of selected interrupts is enabled. * @retval false None of selected interrupts is enabled. */ __STATIC_INLINE bool nrf_usbd_int_enable_check(uint32_t mask); /** * @brief Function for retrieving the information about the enabled interrupts. * * @return The flags of the enabled interrupts. */ __STATIC_INLINE uint32_t nrf_usbd_int_enable_get(void); /** * @brief Function for disabling the selected interrupts. * * @param mask Mask of interrupts to be disabled. */ __STATIC_INLINE void nrf_usbd_int_disable(uint32_t mask); /** @} */ /* End of nrf_usbd_hal */ #ifndef SUPPRESS_INLINE_IMPLEMENTATION /* ------------------------------------------------------------------------------------------------ * Internal functions */ /** * @internal * @brief Internal function for getting the register address of task or event. * * @param[in] offset Offset of the register from the beginning of the instance. * * @attention The offset must be aligned to 4. In other case, hardware fault can occur. * @return Pointer to the register. */ __STATIC_INLINE volatile uint32_t* nrf_usbd_getRegPtr(uint32_t offset) { return (volatile uint32_t*)(((uint8_t *)NRF_USBD) + (uint32_t)offset); } /** * @internal * @brief Internal function for getting the register address of task or event - constant version. * * @param[in] offset Offset of the register from the beginning of the instance. * * @attention The offset must be aligned to 4. In other case, hardware fault can occur. * @return Pointer to the register. */ __STATIC_INLINE volatile const uint32_t* nrf_usbd_getRegPtr_c(uint32_t offset) { return (volatile const uint32_t*)(((uint8_t *)NRF_USBD) + (uint32_t)offset); } /* ------------------------------------------------------------------------------------------------ * Interface functions definitions */ void nrf_usbd_task_trigger(nrf_usbd_task_t task) { *(nrf_usbd_getRegPtr((uint32_t)task)) = 1UL; __ISB(); __DSB(); } uint32_t nrf_usbd_task_address_get(nrf_usbd_task_t task) { return (uint32_t)nrf_usbd_getRegPtr_c((uint32_t)task); } void nrf_usbd_event_clear(nrf_usbd_event_t event) { *(nrf_usbd_getRegPtr((uint32_t)event)) = 0UL; __ISB(); __DSB(); } bool nrf_usbd_event_check(nrf_usbd_event_t event) { return (bool)*nrf_usbd_getRegPtr_c((uint32_t)event); } bool nrf_usbd_event_get_and_clear(nrf_usbd_event_t event) { bool ret = nrf_usbd_event_check(event); if (ret) { nrf_usbd_event_clear(event); } return ret; } uint32_t nrf_usbd_event_address_get(nrf_usbd_event_t event) { return (uint32_t)nrf_usbd_getRegPtr_c((uint32_t)event); } void nrf_usbd_shorts_enable(uint32_t mask) { NRF_USBD->SHORTS |= mask; } void nrf_usbd_shorts_disable(uint32_t mask) { if (~0U == mask) { /* Optimized version for "disable all" */ NRF_USBD->SHORTS = 0; } else { NRF_USBD->SHORTS &= ~mask; } } uint32_t nrf_usbd_shorts_get(void) { return NRF_USBD->SHORTS; } void nrf_usbd_int_enable(uint32_t mask) { NRF_USBD->INTENSET = mask; } bool nrf_usbd_int_enable_check(uint32_t mask) { return !!(NRF_USBD->INTENSET & mask); } uint32_t nrf_usbd_int_enable_get(void) { return NRF_USBD->INTENSET; } void nrf_usbd_int_disable(uint32_t mask) { NRF_USBD->INTENCLR = mask; } #endif /* SUPPRESS_INLINE_IMPLEMENTATION */ /* ------------------------------------------------------------------------------------------------ * End of automatically generated part * ------------------------------------------------------------------------------------------------ */ /** * @addtogroup nrf_usbd_hal * @{ */ /** * @brief Frame counter size. * * The number of counts that can be fitted into frame counter. */ #define NRF_USBD_FRAMECNTR_SIZE \ ( (USBD_FRAMECNTR_FRAMECNTR_Msk >> USBD_FRAMECNTR_FRAMECNTR_Pos) + 1UL ) #ifndef USBD_FRAMECNTR_FRAMECNTR_Msk #error USBD_FRAMECNTR_FRAMECNTR_Msk should be changed into USBD_FRAMECNTR_FRAMECNTR_Msk #endif /** * @brief First isochronous endpoint number. * * The number of the first isochronous endpoint. */ #define NRF_USBD_EPISO_FIRST 8 /** * @brief Total number of IN endpoints. * * Total number of IN endpoint (including ISOCHRONOUS). */ #define NRF_USBD_EPIN_CNT 9 /** * @brief Total number of OUT endpoints. * * Total number of OUT endpoint (including ISOCHRONOUS). */ #define NRF_USBD_EPOUT_CNT 9 /** @brief Mask of the direction bit in an endpoint number. */ #define NRF_USBD_EP_DIR_Msk (1U << 7) /** @brief The value of direction bit for the IN endpoint direction. */ #define NRF_USBD_EP_DIR_IN (1U << 7) /** @brief The value of direction bit for the OUT endpoint direction. */ #define NRF_USBD_EP_DIR_OUT (0U << 7) /** * @brief Macro for making the IN endpoint identifier from endpoint number. * * Macro that sets direction bit to make IN endpoint. * @param[in] epnr Endpoint number. * @return IN Endpoint identifier. */ #define NRF_USBD_EPIN(epnr) (((uint8_t)(epnr)) | NRF_USBD_EP_DIR_IN) /** * @brief Macro for making the OUT endpoint identifier from endpoint number. * * Macro that sets direction bit to make OUT endpoint. * @param[in] epnr Endpoint number. * @return OUT Endpoint identifier. */ #define NRF_USBD_EPOUT(epnr) (((uint8_t)(epnr)) | NRF_USBD_EP_DIR_OUT) /** * @brief Macro for extracting the endpoint number from the specified endpoint identifier. * * Macro that strips out the information about endpoint direction. * * @param[in] ep Endpoint identifier. * * @return Endpoint number. */ #define NRF_USBD_EP_NR_GET(ep) ((uint8_t)(((uint8_t)(ep)) & 0xFU)) /** * @brief Macro for checking the endpoint direction. * * This macro checks if the specified endpoint has the IN direction. * * @param ep Endpoint identifier. * * @retval true The endpoint direction is IN. * @retval false The endpoint direction is OUT. */ #define NRF_USBD_EPIN_CHECK(ep) ( (((uint8_t)(ep)) & NRF_USBD_EP_DIR_Msk) == NRF_USBD_EP_DIR_IN ) /** * @brief Macro for checking endpoint direction. * * This macro checks if given endpoint has OUT direction. * * @param ep Endpoint identifier * * @retval true The endpoint direction is OUT * @retval false The endpoint direction is IN */ #define NRF_USBD_EPOUT_CHECK(ep) ( (((uint8_t)(ep)) & NRF_USBD_EP_DIR_Msk) == NRF_USBD_EP_DIR_OUT ) /** * @brief Macro for checking if endpoint is isochronous. * * @param ep It can be endpoint identifier or just endpoint number to be checked. * * @retval true The endpoint is isochronous type. * @retval false The endpoint is bulk of interrupt type. */ #define NRF_USBD_EPISO_CHECK(ep) (NRF_USBD_EP_NR_GET(ep) >= NRF_USBD_EPISO_FIRST) /** * @brief Macro for checking if given number is valid endpoint number. * * @param ep Endpoint number to be checked. * * @retval true The endpoint is valid. * @retval false The endpoint is not valid. */ #define NRF_USBD_EP_VALIDATE(ep) ( \ (NRF_USBD_EPIN_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRF_USBD_EPIN_CNT)) \ || \ (NRF_USBD_EPOUT_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRF_USBD_EPOUT_CNT)) \ ) /** * @brief Not isochronous data frame received. * * Special value returned by @ref nrf_usbd_episoout_size_get function that means that * data frame was not received at all. * This allows differentiate between situations when zero size data comes or no data comes at all * on isochronous endpoint. */ #define NRF_USBD_EPISOOUT_NO_DATA ((size_t)(-1)) /** @brief EVENTCAUSE register bit masks. */ typedef enum { NRF_USBD_EVENTCAUSE_ISOOUTCRC_MASK = USBD_EVENTCAUSE_ISOOUTCRC_Msk, /**< CRC error was detected on isochronous OUT endpoint 8. */ NRF_USBD_EVENTCAUSE_SUSPEND_MASK = USBD_EVENTCAUSE_SUSPEND_Msk, /**< Signals that the USB lines have been seen idle long enough for the device to enter suspend. */ NRF_USBD_EVENTCAUSE_RESUME_MASK = USBD_EVENTCAUSE_RESUME_Msk, /**< Signals that a RESUME condition (K state or activity restart) has been detected on the USB lines. */ NRF_USBD_EVENTCAUSE_WUREQ_MASK = USBD_EVENTCAUSE_USBWUALLOWED_Msk, /**< The USBD peripheral has exited Low Power mode. */ NRF_USBD_EVENTCAUSE_READY_MASK = USBD_EVENTCAUSE_READY_Msk, /**< MAC is ready for normal operation, rised few us after USBD enabling. */ }nrf_usbd_eventcause_mask_t; /** @brief DPDMVALUE register. */ typedef enum { /** Generate RESUME signal. Signal is generated for 50 us or 5 ms, * depending on bus state. */ NRF_USBD_DPDMVALUE_RESUME = USBD_DPDMVALUE_STATE_Resume, /** D+ Forced high, D- forced low (J state) */ NRF_USBD_DPDMVALUE_J = USBD_DPDMVALUE_STATE_J, /** D+ Forced low, D- forced high (K state) */ NRF_USBD_DPMVALUE_K = USBD_DPDMVALUE_STATE_K }nrf_usbd_dpdmvalue_t; /** @brief Data toggle value or operation. */ typedef enum { NRF_USBD_DTOGGLE_NOP = USBD_DTOGGLE_VALUE_Nop, /**< No operation - do not change the current data toggle on the selected endpoint. */ NRF_USBD_DTOGGLE_DATA0 = USBD_DTOGGLE_VALUE_Data0,/**< Data toggle is DATA0 on the selected endpoint. */ NRF_USBD_DTOGGLE_DATA1 = USBD_DTOGGLE_VALUE_Data1 /**< Data toggle is DATA1 on the selected endpoint. */ }nrf_usbd_dtoggle_t; /** @brief EPSTATUS bit masks. */ typedef enum { NRF_USBD_EPSTATUS_EPIN0_MASK = USBD_EPSTATUS_EPIN0_Msk, NRF_USBD_EPSTATUS_EPIN1_MASK = USBD_EPSTATUS_EPIN1_Msk, NRF_USBD_EPSTATUS_EPIN2_MASK = USBD_EPSTATUS_EPIN2_Msk, NRF_USBD_EPSTATUS_EPIN3_MASK = USBD_EPSTATUS_EPIN3_Msk, NRF_USBD_EPSTATUS_EPIN4_MASK = USBD_EPSTATUS_EPIN4_Msk, NRF_USBD_EPSTATUS_EPIN5_MASK = USBD_EPSTATUS_EPIN5_Msk, NRF_USBD_EPSTATUS_EPIN6_MASK = USBD_EPSTATUS_EPIN6_Msk, NRF_USBD_EPSTATUS_EPIN7_MASK = USBD_EPSTATUS_EPIN7_Msk, NRF_USBD_EPSTATUS_EPOUT0_MASK = USBD_EPSTATUS_EPOUT0_Msk, NRF_USBD_EPSTATUS_EPOUT1_MASK = USBD_EPSTATUS_EPOUT1_Msk, NRF_USBD_EPSTATUS_EPOUT2_MASK = USBD_EPSTATUS_EPOUT2_Msk, NRF_USBD_EPSTATUS_EPOUT3_MASK = USBD_EPSTATUS_EPOUT3_Msk, NRF_USBD_EPSTATUS_EPOUT4_MASK = USBD_EPSTATUS_EPOUT4_Msk, NRF_USBD_EPSTATUS_EPOUT5_MASK = USBD_EPSTATUS_EPOUT5_Msk, NRF_USBD_EPSTATUS_EPOUT6_MASK = USBD_EPSTATUS_EPOUT6_Msk, NRF_USBD_EPSTATUS_EPOUT7_MASK = USBD_EPSTATUS_EPOUT7_Msk, }nrf_usbd_epstatus_mask_t; /** @brief DATAEPSTATUS bit masks. */ typedef enum { NRF_USBD_EPDATASTATUS_EPIN1_MASK = USBD_EPDATASTATUS_EPIN1_Msk, NRF_USBD_EPDATASTATUS_EPIN2_MASK = USBD_EPDATASTATUS_EPIN2_Msk, NRF_USBD_EPDATASTATUS_EPIN3_MASK = USBD_EPDATASTATUS_EPIN3_Msk, NRF_USBD_EPDATASTATUS_EPIN4_MASK = USBD_EPDATASTATUS_EPIN4_Msk, NRF_USBD_EPDATASTATUS_EPIN5_MASK = USBD_EPDATASTATUS_EPIN5_Msk, NRF_USBD_EPDATASTATUS_EPIN6_MASK = USBD_EPDATASTATUS_EPIN6_Msk, NRF_USBD_EPDATASTATUS_EPIN7_MASK = USBD_EPDATASTATUS_EPIN7_Msk, NRF_USBD_EPDATASTATUS_EPOUT1_MASK = USBD_EPDATASTATUS_EPOUT1_Msk, NRF_USBD_EPDATASTATUS_EPOUT2_MASK = USBD_EPDATASTATUS_EPOUT2_Msk, NRF_USBD_EPDATASTATUS_EPOUT3_MASK = USBD_EPDATASTATUS_EPOUT3_Msk, NRF_USBD_EPDATASTATUS_EPOUT4_MASK = USBD_EPDATASTATUS_EPOUT4_Msk, NRF_USBD_EPDATASTATUS_EPOUT5_MASK = USBD_EPDATASTATUS_EPOUT5_Msk, NRF_USBD_EPDATASTATUS_EPOUT6_MASK = USBD_EPDATASTATUS_EPOUT6_Msk, NRF_USBD_EPDATASTATUS_EPOUT7_MASK = USBD_EPDATASTATUS_EPOUT7_Msk, }nrf_usbd_dataepstatus_mask_t; /** @brief ISOSPLIT configurations. */ typedef enum { NRF_USBD_ISOSPLIT_ONEDIR = USBD_ISOSPLIT_SPLIT_OneDir, /**< Full buffer dedicated to either ISO IN or OUT. */ NRF_USBD_ISOSPLIT_HALF = USBD_ISOSPLIT_SPLIT_HalfIN, /**< Buffer divided in half. */ }nrf_usbd_isosplit_t; /** @brief ISOINCONFIG configurations. */ typedef enum { NRF_USBD_ISOINCONFIG_NORESP = USBD_ISOINCONFIG_RESPONSE_NoResp, /**< Endpoint does not respond to an ISO IN token when no data is ready. */ NRF_USBD_ISOINCONFIG_ZERODATA = USBD_ISOINCONFIG_RESPONSE_ZeroData, /**< Endpoint responds with a zero-length data packet to an ISO IN token when no data is ready. */ }nrf_usbd_isoinconfig_t; /** @brief Function for enabling the USBD. */ __STATIC_INLINE void nrf_usbd_enable(void); /** @brief Function for disabling the USBD. */ __STATIC_INLINE void nrf_usbd_disable(void); /** * @brief Function for getting the EVENTCAUSE register. * * @return Flag values defined in @ref nrf_usbd_eventcause_mask_t. */ __STATIC_INLINE uint32_t nrf_usbd_eventcause_get(void); /** * @brief Function for clearing the EVENTCAUSE flags. * * @param flags Flags defined in @ref nrf_usbd_eventcause_mask_t. */ __STATIC_INLINE void nrf_usbd_eventcause_clear(uint32_t flags); /** * @brief Function for getting the EVENTCAUSE register and clearing flags that are set. * * The safest way to return current EVENTCAUSE register. * All the flags that are returned would be cleared inside EVENTCAUSE register. * * @return Flag values defined in @ref nrf_usbd_eventcause_mask_t */ __STATIC_INLINE uint32_t nrf_usbd_eventcause_get_and_clear(void); /** * @brief Function for getting the HALTEDEPIN register value. * * @note Use this function for the response for GetStatus() request to endpoint. * To check whether the endpoint is stalled in the code, use @ref nrf_usbd_ep_is_stall. * * @param ep Endpoint number with IN or OUT flag. * * @return The value of the HALTEDEPIN or HALTEDOUT register for the selected endpoint. */ __STATIC_INLINE uint32_t nrf_usbd_haltedep(uint8_t ep); /** * @brief Function for checking whether the selected endpoint is stalled. * * Function to be used as a syntax sweeter for @ref nrf_usbd_haltedep. * * Also as the isochronous endpoint cannot be halted - it returns always false * if isochronous endpoint is checked. * * @param ep Endpoint number with IN or OUT flag. * * @retval true The endpoint is halted. * @retval false The endpoint is not halted. */ __STATIC_INLINE bool nrf_usbd_ep_is_stall(uint8_t ep); /** * @brief Function for getting EPSTATUS register value. * * @return Flag values defined in @ref nrf_usbd_epstatus_mask_t. */ __STATIC_INLINE uint32_t nrf_usbd_epstatus_get(void); /** * @brief Function for clearing EPSTATUS register value. * * @param flags Flags defined in @ref nrf_usbd_epstatus_mask_t. */ __STATIC_INLINE void nrf_usbd_epstatus_clear(uint32_t flags); /** * @brief Function for getting and clearing EPSTATUS register value. * * Function clears all flags in register set before returning its value. * * @return Flag values defined in @ref nrf_usbd_epstatus_mask_t. */ __STATIC_INLINE uint32_t nrf_usbd_epstatus_get_and_clear(void); /** * @brief Function for getting DATAEPSTATUS register value. * * @return Flag values defined in @ref nrf_usbd_dataepstatus_mask_t. */ __STATIC_INLINE uint32_t nrf_usbd_epdatastatus_get(void); /** * @brief Function for clearing DATAEPSTATUS register value. * * @param flags Flags defined in @ref nrf_usbd_dataepstatus_mask_t. */ __STATIC_INLINE void nrf_usbd_epdatastatus_clear(uint32_t flags); /** * @brief Function for getting and clearing DATAEPSTATUS register value. * * Function clears all flags in register set before returning its value. * @return Flag values defined in @ref nrf_usbd_dataepstatus_mask_t. */ __STATIC_INLINE uint32_t nrf_usbd_epdatastatus_get_and_clear(void); /** * @name Setup command frame functions. * * Functions for setting up command frame part access. * @{ */ /** * @brief Function for reading BMREQUESTTYPE - part of the SETUP packet. * * @return Value of BREQUESTTYPE on the last received SETUP frame. */ __STATIC_INLINE uint8_t nrf_usbd_setup_bmrequesttype_get(void); /** * @brief Function for reading BMREQUEST - part of the SETUP packet. * * @return Value of BREQUEST on the last received SETUP frame. */ __STATIC_INLINE uint8_t nrf_usbd_setup_brequest_get(void); /** * @brief Function for reading WVALUE - part of the SETUP packet. * * @return Value of WVALUE on the last received SETUP frame. */ __STATIC_INLINE uint16_t nrf_usbd_setup_wvalue_get(void); /** * @brief Function for reading WINDEX - part of the SETUP packet. * * @return Value of WINDEX on the last received SETUP frame. */ __STATIC_INLINE uint16_t nrf_usbd_setup_windex_get(void); /** * @brief Function for reading WLENGTH - part of the SETUP packet. * * @return Value of WLENGTH on the last received SETUP frame. */ __STATIC_INLINE uint16_t nrf_usbd_setup_wlength_get(void); /** @} */ /** * @brief Function for getting the number of received bytes on the selected endpoint. * * @note This function can be used on bulk, interrupt, and isochronous endpoints. * @note For the function that returns different value for the ISOOUT zero * transfer or no transfer at all, see the @ref nrf_usbd_episoout_size_get * function. This function will return 0 for both cases. * * @param ep Endpoint identifier. * * @return Number of received bytes. */ __STATIC_INLINE size_t nrf_usbd_epout_size_get(uint8_t ep); /** * @brief Function for getting number of the received bytes on isochronous endpoint. * * @param ep Endpoint identifier, must be an isochronous OUT endpoint. * * @return Number of bytes received or @ref NRF_USBD_EPISOOUT_NO_DATA. */ __STATIC_INLINE size_t nrf_usbd_episoout_size_get(uint8_t ep); /** * @brief Function for clearing OUT endpoint to accept any new incoming traffic. * * @param ep ep Endpoint identifier. Only OUT interrupt/bulk endpoints are accepted. */ __STATIC_INLINE void nrf_usbd_epout_clear(uint8_t ep); /** @brief Function for enabling the USB pullup. */ __STATIC_INLINE void nrf_usbd_pullup_enable(void); /** @brief Function for disabling the USB pullup. */ __STATIC_INLINE void nrf_usbd_pullup_disable(void); /** * @brief Function for returning the current the USB pullup state. * * @retval true The USB pullup is enabled. * @retval false The USB pullup is disabled. */ __STATIC_INLINE bool nrf_usbd_pullup_check(void); /** * @brief Function for configuring the value to be forced on the bus on the DRIVEDPDM task. * * The selected state will be forced on the bus when @ref NRF_USBD_TASK_DRIVEDPDM is set. * The state will be removed from the bus on @ref NRF_USBD_TASK_NODRIVEDPDM and * the control will be returned to the USBD peripheral. * @param val State to be set. */ __STATIC_INLINE void nrf_usbd_dpdmvalue_set(nrf_usbd_dpdmvalue_t val); /** * @brief Function for setting the data toggle. * * Configuration of the current state of data toggling. * @param ep Endpoint number with the information about its direction. * @param op Operation to execute. */ __STATIC_INLINE void nrf_usbd_dtoggle_set(uint8_t ep, nrf_usbd_dtoggle_t op); /** * @brief Function for getting the data toggle. * * Get the current state of data toggling. * * @param ep Endpoint number to return the information about current data toggling. * * @retval NRF_USBD_DTOGGLE_DATA0 Data toggle is DATA0 on selected endpoint. * @retval NRF_USBD_DTOGGLE_DATA1 Data toggle is DATA1 on selected endpoint. */ __STATIC_INLINE nrf_usbd_dtoggle_t nrf_usbd_dtoggle_get(uint8_t ep); /** * @brief Function for checking whether the endpoint is enabled. * * @param ep Endpoint ID to be checked. * * @retval true Endpoint is enabled. * @retval false Endpoint is disabled. */ __STATIC_INLINE bool nrf_usbd_ep_enable_check(uint8_t ep); /** * @brief Function for enabling the selected endpoint. * * The enabled endpoint responds for the tokens on the USB bus. * * @param ep Endpoint ID to be enabled. */ __STATIC_INLINE void nrf_usbd_ep_enable(uint8_t ep); /** * @brief Function for disabling the selected endpoint. * * The disabled endpoint does not respond for the tokens on the USB bus. * * @param ep Endpoint ID to be disabled. */ __STATIC_INLINE void nrf_usbd_ep_disable(uint8_t ep); /** * @brief Function for disabling all endpoints. * * An auxiliary function to disable all aviable endpoints. * It leaves only EP0 IN and OUT enabled. */ __STATIC_INLINE void nrf_usbd_ep_all_disable(void); /** * @brief Function for stalling the selected endpoint. * * @note This function cannot be called on isochronous endpoint. * * @param ep Endpoint identifier. */ __STATIC_INLINE void nrf_usbd_ep_stall(uint8_t ep); /** * @brief Function for unstalling the selected endpoint. * * @note This function cannot be called on isochronous endpoint. * * @param ep Endpoint identifier */ __STATIC_INLINE void nrf_usbd_ep_unstall(uint8_t ep); /** * @brief Function for configuring the isochronous buffer splitting. * * This function configures isochronous buffer splitting between IN and OUT endpoints. * * @param split Required configuration. */ __STATIC_INLINE void nrf_usbd_isosplit_set(nrf_usbd_isosplit_t split); /** * @brief Function for getting the isochronous buffer splitting configuration. * * This function gets the current isochronous buffer splitting configuration. * * @return Current configuration. */ __STATIC_INLINE nrf_usbd_isosplit_t nrf_usbd_isosplit_get(void); /** * @brief Function for getting current frame counter. * * @return Current frame counter. */ __STATIC_INLINE uint32_t nrf_usbd_framecntr_get(void); /** * @brief Function for entering into the USB low power mode. * * After this function is called, the clock source from the USBD is disconnected internally. * After this function is called, most of the USBD registers cannot be accessed anymore. * * @sa nrf_usbd_lowpower_disable * @sa nrf_usbd_lowpower_check */ __STATIC_INLINE void nrf_usbd_lowpower_enable(void); /** * @brief Function for exiting from the USB low power mode. * * After this function is called, the clock source for the USBD is connected internally. * The @ref NRF_USBD_EVENTCAUSE_WUREQ_MASK event will be generated and * then the USBD registers can be accessed. * * @sa nrf_usbd_lowpower_enable * @sa nrf_usbd_lowpower_check */ __STATIC_INLINE void nrf_usbd_lowpower_disable(void); /** * @brief Function for checking the state of the low power mode. * * @retval true The USBD is in low power mode. * @retval false The USBD is not in low power mode. */ __STATIC_INLINE bool nrf_usbd_lowpower_check(void); /** * @brief Function for configuring ISO IN endpoint response to an IN token when no data is ready to be sent. * * @param config Required configuration. */ __STATIC_INLINE void nrf_usbd_isoinconfig_set(nrf_usbd_isoinconfig_t config); /** * @brief Function for getting the cofiguration of ISO IN endpoint response to an IN token when no data is ready to be sent. * * @return Current configuration. */ __STATIC_INLINE nrf_usbd_isoinconfig_t nrf_usbd_isoinconfig_get(void); /** * @brief Function for configuring the EasyDMA channel. * * Configures EasyDMA for the transfer. * * @param ep Endpoint identifier (with direction). * @param ptr Pointer to the data. * @param maxcnt Number of bytes to transfer. */ __STATIC_INLINE void nrf_usbd_ep_easydma_set(uint8_t ep, uint32_t ptr, uint32_t maxcnt); /** * @brief Function for getting number of transferred bytes. * * This function gets the number of transferred bytes in the last transaction. * * @param ep Endpoint identifier. * * @return The content of the AMOUNT register. */ __STATIC_INLINE uint32_t nrf_usbd_ep_amount_get(uint8_t ep); #ifndef SUPPRESS_INLINE_IMPLEMENTATION void nrf_usbd_enable(void) { #ifdef NRF_FPGA_IMPLEMENTATION *(volatile uint32_t *)0x400005F4 = 3; __ISB(); __DSB(); *(volatile uint32_t *)0x400005F0 = 3; __ISB(); __DSB(); #endif NRF_USBD->ENABLE = USBD_ENABLE_ENABLE_Enabled << USBD_ENABLE_ENABLE_Pos; __ISB(); __DSB(); } void nrf_usbd_disable(void) { NRF_USBD->ENABLE = USBD_ENABLE_ENABLE_Disabled << USBD_ENABLE_ENABLE_Pos; __ISB(); __DSB(); } uint32_t nrf_usbd_eventcause_get(void) { return NRF_USBD->EVENTCAUSE; } void nrf_usbd_eventcause_clear(uint32_t flags) { NRF_USBD->EVENTCAUSE = flags; __ISB(); __DSB(); } uint32_t nrf_usbd_eventcause_get_and_clear(void) { uint32_t ret; ret = nrf_usbd_eventcause_get(); nrf_usbd_eventcause_clear(ret); __ISB(); __DSB(); return ret; } uint32_t nrf_usbd_haltedep(uint8_t ep) { uint8_t epnr = NRF_USBD_EP_NR_GET(ep); if (NRF_USBD_EPIN_CHECK(ep)) { NRFX_ASSERT(epnr < NRFX_ARRAY_SIZE(NRF_USBD->HALTED.EPIN)); return NRF_USBD->HALTED.EPIN[epnr]; } else { NRFX_ASSERT(epnr < NRFX_ARRAY_SIZE(NRF_USBD->HALTED.EPOUT)); return NRF_USBD->HALTED.EPOUT[epnr]; } } bool nrf_usbd_ep_is_stall(uint8_t ep) { if (NRF_USBD_EPISO_CHECK(ep)) return false; return USBD_HALTED_EPOUT_GETSTATUS_Halted == nrf_usbd_haltedep(ep); } uint32_t nrf_usbd_epstatus_get(void) { return NRF_USBD->EPSTATUS; } void nrf_usbd_epstatus_clear(uint32_t flags) { NRF_USBD->EPSTATUS = flags; __ISB(); __DSB(); } uint32_t nrf_usbd_epstatus_get_and_clear(void) { uint32_t ret; ret = nrf_usbd_epstatus_get(); nrf_usbd_epstatus_clear(ret); return ret; } uint32_t nrf_usbd_epdatastatus_get(void) { return NRF_USBD->EPDATASTATUS; } void nrf_usbd_epdatastatus_clear(uint32_t flags) { NRF_USBD->EPDATASTATUS = flags; __ISB(); __DSB(); } uint32_t nrf_usbd_epdatastatus_get_and_clear(void) { uint32_t ret; ret = nrf_usbd_epdatastatus_get(); nrf_usbd_epdatastatus_clear(ret); return ret; } uint8_t nrf_usbd_setup_bmrequesttype_get(void) { return (uint8_t)(NRF_USBD->BMREQUESTTYPE); } uint8_t nrf_usbd_setup_brequest_get(void) { return (uint8_t)(NRF_USBD->BREQUEST); } uint16_t nrf_usbd_setup_wvalue_get(void) { const uint16_t val = NRF_USBD->WVALUEL; return (uint16_t)(val | ((NRF_USBD->WVALUEH) << 8)); } uint16_t nrf_usbd_setup_windex_get(void) { const uint16_t val = NRF_USBD->WINDEXL; return (uint16_t)(val | ((NRF_USBD->WINDEXH) << 8)); } uint16_t nrf_usbd_setup_wlength_get(void) { const uint16_t val = NRF_USBD->WLENGTHL; return (uint16_t)(val | ((NRF_USBD->WLENGTHH) << 8)); } size_t nrf_usbd_epout_size_get(uint8_t ep) { NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep)); NRFX_ASSERT(NRF_USBD_EPOUT_CHECK(ep)); if (NRF_USBD_EPISO_CHECK(ep)) { size_t size_isoout = NRF_USBD->SIZE.ISOOUT; if ((size_isoout & USBD_SIZE_ISOOUT_ZERO_Msk) == (USBD_SIZE_ISOOUT_ZERO_ZeroData << USBD_SIZE_ISOOUT_ZERO_Pos)) { size_isoout = 0; } return size_isoout; } NRFX_ASSERT(NRF_USBD_EP_NR_GET(ep) < NRFX_ARRAY_SIZE(NRF_USBD->SIZE.EPOUT)); return NRF_USBD->SIZE.EPOUT[NRF_USBD_EP_NR_GET(ep)]; } size_t nrf_usbd_episoout_size_get(uint8_t ep) { NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep)); NRFX_ASSERT(NRF_USBD_EPOUT_CHECK(ep)); NRFX_ASSERT(NRF_USBD_EPISO_CHECK(ep)); size_t size_isoout = NRF_USBD->SIZE.ISOOUT; if (size_isoout == 0) { size_isoout = NRF_USBD_EPISOOUT_NO_DATA; } else if ((size_isoout & USBD_SIZE_ISOOUT_ZERO_Msk) == (USBD_SIZE_ISOOUT_ZERO_ZeroData << USBD_SIZE_ISOOUT_ZERO_Pos)) { size_isoout = 0; } return size_isoout; } void nrf_usbd_epout_clear(uint8_t ep) { NRFX_ASSERT(NRF_USBD_EPOUT_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRFX_ARRAY_SIZE(NRF_USBD->SIZE.EPOUT))); NRF_USBD->SIZE.EPOUT[NRF_USBD_EP_NR_GET(ep)] = 0; __ISB(); __DSB(); } void nrf_usbd_pullup_enable(void) { NRF_USBD->USBPULLUP = USBD_USBPULLUP_CONNECT_Enabled << USBD_USBPULLUP_CONNECT_Pos; __ISB(); __DSB(); } void nrf_usbd_pullup_disable(void) { NRF_USBD->USBPULLUP = USBD_USBPULLUP_CONNECT_Disabled << USBD_USBPULLUP_CONNECT_Pos; __ISB(); __DSB(); } bool nrf_usbd_pullup_check(void) { return NRF_USBD->USBPULLUP == (USBD_USBPULLUP_CONNECT_Enabled << USBD_USBPULLUP_CONNECT_Pos); } void nrf_usbd_dpdmvalue_set(nrf_usbd_dpdmvalue_t val) { NRF_USBD->DPDMVALUE = ((uint32_t)val) << USBD_DPDMVALUE_STATE_Pos; } void nrf_usbd_dtoggle_set(uint8_t ep, nrf_usbd_dtoggle_t op) { NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep)); NRFX_ASSERT(!NRF_USBD_EPISO_CHECK(ep)); NRF_USBD->DTOGGLE = ep | (NRF_USBD_DTOGGLE_NOP << USBD_DTOGGLE_VALUE_Pos); __DSB(); NRF_USBD->DTOGGLE = ep | (op << USBD_DTOGGLE_VALUE_Pos); __ISB(); __DSB(); } nrf_usbd_dtoggle_t nrf_usbd_dtoggle_get(uint8_t ep) { uint32_t retval; /* Select the endpoint to read */ NRF_USBD->DTOGGLE = ep | (NRF_USBD_DTOGGLE_NOP << USBD_DTOGGLE_VALUE_Pos); retval = ((NRF_USBD->DTOGGLE) & USBD_DTOGGLE_VALUE_Msk) >> USBD_DTOGGLE_VALUE_Pos; return (nrf_usbd_dtoggle_t)retval; } bool nrf_usbd_ep_enable_check(uint8_t ep) { NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep)); uint8_t epnr = NRF_USBD_EP_NR_GET(ep); if (NRF_USBD_EPIN_CHECK(ep)) { return 0 != (NRF_USBD->EPINEN & (1UL << epnr)); } else { return 0 != (NRF_USBD->EPOUTEN & (1UL << epnr)); } } void nrf_usbd_ep_enable(uint8_t ep) { NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep)); uint8_t epnr = NRF_USBD_EP_NR_GET(ep); if (NRF_USBD_EPIN_CHECK(ep)) { NRF_USBD->EPINEN |= 1UL << epnr; } else { NRF_USBD->EPOUTEN |= 1UL << epnr; } __ISB(); __DSB(); } void nrf_usbd_ep_disable(uint8_t ep) { NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep)); uint8_t epnr = NRF_USBD_EP_NR_GET(ep); if (NRF_USBD_EPIN_CHECK(ep)) { NRF_USBD->EPINEN &= ~(1UL << epnr); } else { NRF_USBD->EPOUTEN &= ~(1UL << epnr); } __ISB(); __DSB(); } void nrf_usbd_ep_all_disable(void) { NRF_USBD->EPINEN = USBD_EPINEN_IN0_Enable << USBD_EPINEN_IN0_Pos; NRF_USBD->EPOUTEN = USBD_EPOUTEN_OUT0_Enable << USBD_EPOUTEN_OUT0_Pos; __ISB(); __DSB(); } void nrf_usbd_ep_stall(uint8_t ep) { NRFX_ASSERT(!NRF_USBD_EPISO_CHECK(ep)); NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_Stall << USBD_EPSTALL_STALL_Pos) | ep; __ISB(); __DSB(); } void nrf_usbd_ep_unstall(uint8_t ep) { NRFX_ASSERT(!NRF_USBD_EPISO_CHECK(ep)); NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep; __ISB(); __DSB(); } void nrf_usbd_isosplit_set(nrf_usbd_isosplit_t split) { NRF_USBD->ISOSPLIT = split << USBD_ISOSPLIT_SPLIT_Pos; } nrf_usbd_isosplit_t nrf_usbd_isosplit_get(void) { return (nrf_usbd_isosplit_t) (((NRF_USBD->ISOSPLIT) & USBD_ISOSPLIT_SPLIT_Msk) >> USBD_ISOSPLIT_SPLIT_Pos); } uint32_t nrf_usbd_framecntr_get(void) { return NRF_USBD->FRAMECNTR; } void nrf_usbd_lowpower_enable(void) { NRF_USBD->LOWPOWER = USBD_LOWPOWER_LOWPOWER_LowPower << USBD_LOWPOWER_LOWPOWER_Pos; } void nrf_usbd_lowpower_disable(void) { NRF_USBD->LOWPOWER = USBD_LOWPOWER_LOWPOWER_ForceNormal << USBD_LOWPOWER_LOWPOWER_Pos; } bool nrf_usbd_lowpower_check(void) { return (NRF_USBD->LOWPOWER != (USBD_LOWPOWER_LOWPOWER_ForceNormal << USBD_LOWPOWER_LOWPOWER_Pos)); } void nrf_usbd_isoinconfig_set(nrf_usbd_isoinconfig_t config) { NRF_USBD->ISOINCONFIG = ((uint32_t)config) << USBD_ISOINCONFIG_RESPONSE_Pos; } nrf_usbd_isoinconfig_t nrf_usbd_isoinconfig_get(void) { return (nrf_usbd_isoinconfig_t) (((NRF_USBD->ISOINCONFIG) & USBD_ISOINCONFIG_RESPONSE_Msk) >> USBD_ISOINCONFIG_RESPONSE_Pos); } void nrf_usbd_ep_easydma_set(uint8_t ep, uint32_t ptr, uint32_t maxcnt) { if (NRF_USBD_EPIN_CHECK(ep)) { if (NRF_USBD_EPISO_CHECK(ep)) { NRF_USBD->ISOIN.PTR = ptr; NRF_USBD->ISOIN.MAXCNT = maxcnt; } else { uint8_t epnr = NRF_USBD_EP_NR_GET(ep); NRFX_ASSERT(epnr < NRFX_ARRAY_SIZE(NRF_USBD->EPIN)); NRF_USBD->EPIN[epnr].PTR = ptr; NRF_USBD->EPIN[epnr].MAXCNT = maxcnt; } } else { if (NRF_USBD_EPISO_CHECK(ep)) { NRF_USBD->ISOOUT.PTR = ptr; NRF_USBD->ISOOUT.MAXCNT = maxcnt; } else { uint8_t epnr = NRF_USBD_EP_NR_GET(ep); NRFX_ASSERT(epnr < NRFX_ARRAY_SIZE(NRF_USBD->EPOUT)); NRF_USBD->EPOUT[epnr].PTR = ptr; NRF_USBD->EPOUT[epnr].MAXCNT = maxcnt; } } } uint32_t nrf_usbd_ep_amount_get(uint8_t ep) { uint32_t ret; if (NRF_USBD_EPIN_CHECK(ep)) { if (NRF_USBD_EPISO_CHECK(ep)) { ret = NRF_USBD->ISOIN.AMOUNT; } else { uint8_t epnr = NRF_USBD_EP_NR_GET(ep); NRFX_ASSERT(epnr < NRFX_ARRAY_SIZE(NRF_USBD->EPOUT)); ret = NRF_USBD->EPIN[epnr].AMOUNT; } } else { if (NRF_USBD_EPISO_CHECK(ep)) { ret = NRF_USBD->ISOOUT.AMOUNT; } else { uint8_t epnr = NRF_USBD_EP_NR_GET(ep); NRFX_ASSERT(epnr < NRFX_ARRAY_SIZE(NRF_USBD->EPOUT)); ret = NRF_USBD->EPOUT[epnr].AMOUNT; } } return ret; } #endif /* SUPPRESS_INLINE_IMPLEMENTATION */ /** @} */ #ifdef __cplusplus } #endif #endif /* NRF_USBD_H__ */