/** * Copyright (c) 2018 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_KMU_H__ #define NRF_KMU_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_kmu_hal KMU HAL * @{ * @ingroup nrf_kmu * @brief Hardware access layer for managing the Key Management Unit (KMU) peripheral. */ /** @brief KMU tasks. */ typedef enum { NRF_KMU_TASK_PUSH_KEYSLOT = offsetof(NRF_KMU_Type, TASKS_PUSH_KEYSLOT), ///< Push a key slot over secure APB. } nrf_kmu_task_t; /** @brief KMU events. */ typedef enum { NRF_KMU_EVENT_KEYSLOT_PUSHED = offsetof(NRF_KMU_Type, EVENTS_KEYSLOT_PUSHED), ///< Key successfully pushed over secure APB. NRF_KMU_EVENT_KEYSLOT_REVOKED = offsetof(NRF_KMU_Type, EVENTS_KEYSLOT_REVOKED), ///< Key has been revoked and cannot be tasked for selection. NRF_KMU_EVENT_KEYSLOT_ERROR = offsetof(NRF_KMU_Type, EVENTS_KEYSLOT_ERROR) ///< No key slot selected or no destination address defined or error during push mechanism. } nrf_kmu_event_t; /** @brief KMU interrupts. */ typedef enum { NRF_KMU_INT_PUSHED_MASK = KMU_INTEN_KEYSLOT_PUSHED_Msk, ///< Interrupt on KEYSLOT_PUSHED event. NRF_KMU_INT_REVOKED_MASK = KMU_INTEN_KEYSLOT_REVOKED_Msk, ///< Interrupt on KEYSLOT_REVOKED event. NRF_KMU_INT_ERROR_MASK = KMU_INTEN_KEYSLOT_ERROR_Msk ///< Interrupt on KEYSLOT_ERROR event. } nrf_kmu_int_mask_t; /** @brief KMU operation status. */ typedef enum { NRF_KMU_STATUS_BLOCKED_MASK = KMU_STATUS_BLOCKED_Msk, ///< Access violation detected and blocked. NRF_KMU_STATUS_SELECTED_MASK = KMU_STATUS_SELECTED_Msk, ///< Key slot ID successfully selected by KMU } nrf_kmu_status_t; /** * @brief Function for activating a specific KMU task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task to be activated. */ __STATIC_INLINE void nrf_kmu_task_trigger(NRF_KMU_Type * p_reg, nrf_kmu_task_t task); /** * @brief Function for getting the address of a specific KMU task register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Requested task. * * @return Address of the specified task register. */ __STATIC_INLINE uint32_t nrf_kmu_task_address_get(NRF_KMU_Type const * p_reg, nrf_kmu_task_t task); /** * @brief Function for clearing a specific KMU event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to clear. */ __STATIC_INLINE void nrf_kmu_event_clear(NRF_KMU_Type * p_reg, nrf_kmu_event_t event); /** * @brief Function for retrieving the state of the KMU event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ __STATIC_INLINE bool nrf_kmu_event_check(NRF_KMU_Type const * p_reg, nrf_kmu_event_t event); /** * @brief Function for getting the address of a specific KMU event register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Requested event. * * @return Address of the specified event register. */ __STATIC_INLINE uint32_t nrf_kmu_event_address_get(NRF_KMU_Type const * p_reg, nrf_kmu_event_t event); /** * @brief Function for enabling specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Interrupts to be enabled. */ __STATIC_INLINE void nrf_kmu_int_enable(NRF_KMU_Type * p_reg, uint32_t mask); /** * @brief Function for disabling specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Interrupts to be disabled. */ __STATIC_INLINE void nrf_kmu_int_disable(NRF_KMU_Type * p_reg, uint32_t mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] kmu_int Interrupt to be checked. * * @retval true The interrupt is enabled. * @retval false The interrupt is not enabled. */ __STATIC_INLINE bool nrf_kmu_int_enable_check(NRF_KMU_Type const * p_reg, nrf_kmu_int_mask_t kmu_int); /** * @brief Function for retrieving the state of interrupts. * * Function returns bitmask. Please use @ref nrf_kmu_int_mask_t to check interrupts status. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Bitmask with pending interrupts bits. */ __STATIC_INLINE uint32_t nrf_kmu_intpend_get(NRF_KMU_Type const * p_reg); /** * @brief Function for getting status bits of the KMU operation. * * Function returns bitmask. Please use @ref nrf_kmu_status_t to check operations status. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Bitmask with operation status bits. */ __STATIC_INLINE uint32_t nrf_kmu_status_get(NRF_KMU_Type const * p_reg); /** * @brief Function for selecting the key slot ID. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] keyslot_id Key slot ID to be read over AHB or pushed over * secure APB when TASKS_PUSH_KEYSLOT is started. */ __STATIC_INLINE void nrf_kmu_keyslot_set(NRF_KMU_Type * p_reg, uint8_t keyslot_id); /** * @brief Function for getting the key slot ID. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Key slot ID. */ __STATIC_INLINE uint8_t nrf_kmu_keyslot_get(NRF_KMU_Type const * p_reg); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_kmu_task_trigger(NRF_KMU_Type * p_reg, nrf_kmu_task_t task) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE uint32_t nrf_kmu_task_address_get(NRF_KMU_Type const * p_reg, nrf_kmu_task_t task) { return ((uint32_t)p_reg + (uint32_t)task); } __STATIC_INLINE void nrf_kmu_event_clear(NRF_KMU_Type * p_reg, nrf_kmu_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL; volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)); (void)dummy; } __STATIC_INLINE bool nrf_kmu_event_check(NRF_KMU_Type const * p_reg, nrf_kmu_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE uint32_t nrf_kmu_event_address_get(NRF_KMU_Type const * p_reg, nrf_kmu_event_t event) { return ((uint32_t)p_reg + (uint32_t)event); } __STATIC_INLINE void nrf_kmu_int_enable(NRF_KMU_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } __STATIC_INLINE void nrf_kmu_int_disable(NRF_KMU_Type * p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } __STATIC_INLINE bool nrf_kmu_int_enable_check(NRF_KMU_Type const * p_reg, nrf_kmu_int_mask_t kmu_int) { return (bool)(p_reg->INTENSET & kmu_int); } __STATIC_INLINE uint32_t nrf_kmu_intpend_get(NRF_KMU_Type const * p_reg) { return p_reg->INTPEND; } __STATIC_INLINE uint32_t nrf_kmu_status_get(NRF_KMU_Type const * p_reg) { return p_reg->STATUS; } __STATIC_INLINE void nrf_kmu_keyslot_set(NRF_KMU_Type * p_reg, uint8_t keyslot_id) { p_reg->SELECTKEYSLOT = (uint32_t) keyslot_id; } __STATIC_INLINE uint8_t nrf_kmu_keyslot_get(NRF_KMU_Type const * p_reg) { return (uint8_t) p_reg->SELECTKEYSLOT; } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif // NRF_KMU_H__