/** * Copyright (c) 2018 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_CCM_H__ #define NRF_CCM_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_ccm_hal AES CCM HAL * @{ * @ingroup nrf_ccm * @brief Hardware access layer for managing the AES CCM peripheral. */ /** @brief CCM tasks. */ typedef enum { NRF_CCM_TASK_KSGEN = offsetof(NRF_CCM_Type, TASKS_KSGEN), ///< Start generation of key-stream. NRF_CCM_TASK_CRYPT = offsetof(NRF_CCM_Type, TASKS_CRYPT), ///< Start encryption/decryption. NRF_CCM_TASK_STOP = offsetof(NRF_CCM_Type, TASKS_STOP), ///< Stop encryption/decryption. #if defined(CCM_RATEOVERRIDE_RATEOVERRIDE_Pos) || defined(__NRFX_DOXYGEN__) NRF_CCM_TASK_RATEOVERRIDE = offsetof(NRF_CCM_Type, TASKS_RATEOVERRIDE), ///< Override DATARATE setting in MODE register. #endif } nrf_ccm_task_t; /** @brief CCM events. */ typedef enum { NRF_CCM_EVENT_ENDKSGEN = offsetof(NRF_CCM_Type, EVENTS_ENDKSGEN), ///< Keystream generation complete. NRF_CCM_EVENT_ENDCRYPT = offsetof(NRF_CCM_Type, EVENTS_ENDCRYPT), ///< Encrypt/decrypt complete. NRF_CCM_EVENT_ERROR = offsetof(NRF_CCM_Type, EVENTS_ERROR), ///< CCM error event. } nrf_ccm_event_t; /** @brief CCM interrupts. */ typedef enum { NRF_CCM_INT_ENDKSGEN_MASK = CCM_INTENSET_ENDKSGEN_Msk, ///< Interrupt on ENDKSGEN event. NRF_CCM_INT_ENDCRYPT_MASK = CCM_INTENSET_ENDCRYPT_Msk, ///< Interrupt on ENDCRYPT event. NRF_CCM_INT_ERROR_MASK = CCM_INTENSET_ERROR_Msk, ///< Interrupt on ERROR event. } nrf_ccm_int_mask_t; /** @brief CCM modes of operation. */ typedef enum { NRF_CCM_MODE_ENCRYPTION = CCM_MODE_MODE_Encryption, ///< Encryption mode. NRF_CCM_MODE_DECRYPTION = CCM_MODE_MODE_Decryption, ///< Decryption mode. } nrf_ccm_mode_t; #if defined(CCM_MODE_DATARATE_Pos) || defined(__NRFX_DOXYGEN__) /** @brief CCM data rates. */ typedef enum { NRF_CCM_DATARATE_1M = CCM_MODE_DATARATE_1Mbit, ///< 1 Mbps. NRF_CCM_DATARATE_2M = CCM_MODE_DATARATE_2Mbit, ///< 2 Mbps. #if defined(CCM_MODE_DATARATE_125Kbps) || defined(__NRFX_DOXYGEN__) NRF_CCM_DATARATE_125K = CCM_MODE_DATARATE_125Kbps, ///< 125 Kbps. #endif #if defined(CCM_MODE_DATARATE_500Kbps) || defined(__NRFX_DOXYGEN__) NRF_CCM_DATARATE_500K = CCM_MODE_DATARATE_500Kbps, ///< 500 Kbps. #endif } nrf_ccm_datarate_t; #endif // defined(CCM_MODE_DATARATE_Pos) || defined(__NRFX_DOXYGEN__) #if defined(CCM_MODE_LENGTH_Pos) || defined(__NRFX_DOXYGEN__) /** @brief CCM packet length options. */ typedef enum { NRF_CCM_LENGTH_DEFAULT = CCM_MODE_LENGTH_Default, ///< Default length. NRF_CCM_LENGTH_EXTENDED = CCM_MODE_LENGTH_Extended, ///< Extended length. } nrf_ccm_length_t; #endif // defined(CCM_MODE_LENGTH_Pos) || defined(__NRFX_DOXYGEN__) /** @brief CCM configuration. */ typedef struct { nrf_ccm_mode_t mode; ///< Operation mode. #if defined(CCM_MODE_DATARATE_Pos) || defined(__NRFX_DOXYGEN__) nrf_ccm_datarate_t datarate; ///< Data rate. #endif #if defined(CCM_MODE_LENGTH_Pos) || defined(__NRFX_DOXYGEN__) nrf_ccm_length_t length; ///< Lenght of the CCM packet. #endif } nrf_ccm_config_t; /** * @brief Function for activating a specific CCM task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task to be activated. */ __STATIC_INLINE void nrf_ccm_task_trigger(NRF_CCM_Type * p_reg, nrf_ccm_task_t task); /** * @brief Function for getting the address of a specific CCM task register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Requested task. * * @return Address of the specified task register. */ __STATIC_INLINE uint32_t nrf_ccm_task_address_get(NRF_CCM_Type const * p_reg, nrf_ccm_task_t task); /** * @brief Function for clearing a specific CCM event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to clear. */ __STATIC_INLINE void nrf_ccm_event_clear(NRF_CCM_Type * p_reg, nrf_ccm_event_t event); /** * @brief Function for retrieving the state of a specific CCM event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ __STATIC_INLINE bool nrf_ccm_event_check(NRF_CCM_Type const * p_reg, nrf_ccm_event_t event); /** * @brief Function for getting the address of a specific CCM event register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Requested event. * * @return Address of the specified event register. */ __STATIC_INLINE uint32_t nrf_ccm_event_address_get(NRF_CCM_Type const * p_reg, nrf_ccm_event_t event); /** * @brief Function for enabling specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Interrupts to be enabled. */ __STATIC_INLINE void nrf_ccm_int_enable(NRF_CCM_Type * p_reg, uint32_t mask); /** * @brief Function for disabling specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Interrupts to be disabled. */ __STATIC_INLINE void nrf_ccm_int_disable(NRF_CCM_Type * p_reg, uint32_t mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ccm_int Interrupt to be checked. * * @retval true The interrupt is enabled. * @retval false The interrupt is not enabled. */ __STATIC_INLINE bool nrf_ccm_int_enable_check(NRF_CCM_Type const * p_reg, nrf_ccm_int_mask_t ccm_int); /** * @brief Function for enabling the CCM peripheral. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ __STATIC_INLINE void nrf_ccm_enable(NRF_CCM_Type * p_reg); /** * @brief Function for disabling the CCM peripheral. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ __STATIC_INLINE void nrf_ccm_disable(NRF_CCM_Type * p_reg); /** * @brief Function for setting the CCM peripheral configuration. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_config Pointer to the structure with configuration to be set. */ __STATIC_INLINE void nrf_ccm_configure(NRF_CCM_Type * p_reg, nrf_ccm_config_t const * p_config); #if defined(CCM_MAXPACKETSIZE_MAXPACKETSIZE_Pos) || defined(__NRFX_DOXYGEN__) /** * @brief Function for setting the length of key-stream generated * when the packet length is configured as extended. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] size Maximum length of the key-stream. */ __STATIC_INLINE void nrf_ccm_maxpacketsize_set(NRF_CCM_Type * p_reg, uint8_t size); #endif // defined(CCM_MAXPACKETSIZE_MAXPACKETSIZE_Pos) || defined(__NRFX_DOXYGEN__) /** * @brief Function for getting the MIC check result. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @retval true The MIC check passed. * @retval false The MIC check failed. */ __STATIC_INLINE bool nrf_ccm_micstatus_get(NRF_CCM_Type const * p_reg); /** * @brief Function for setting the pointer to the data structure * holding the AES key and the CCM NONCE vector. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_data Pointer to the data structure. */ __STATIC_INLINE void nrf_ccm_cnfptr_set(NRF_CCM_Type * p_reg, uint32_t const * p_data); /** * @brief Function for getting the pointer to the data structure * holding the AES key and the CCM NONCE vector. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Pointer to the data structure. */ __STATIC_INLINE uint32_t * nrf_ccm_cnfptr_get(NRF_CCM_Type const * p_reg); /** * @brief Function for setting the input data pointer. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_data Input data pointer. */ __STATIC_INLINE void nrf_ccm_inptr_set(NRF_CCM_Type * p_reg, uint32_t const * p_data); /** * @brief Function for getting the input data pointer. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Input data pointer. */ __STATIC_INLINE uint32_t * nrf_ccm_inptr_get(NRF_CCM_Type const * p_reg); /** * @brief Function for setting the output data pointer. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_data Output data pointer. */ __STATIC_INLINE void nrf_ccm_outptr_set(NRF_CCM_Type * p_reg, uint32_t const * p_data); /** * @brief Function for getting the output data pointer. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Output data pointer. */ __STATIC_INLINE uint32_t * nrf_ccm_outptr_get(NRF_CCM_Type const * p_reg); /** * @brief Function for setting the pointer to the scratch area used for * temporary storage. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_area Pointer to the scratch area. */ __STATIC_INLINE void nrf_ccm_scratchptr_set(NRF_CCM_Type * p_reg, uint32_t const * p_area); /** * @brief Function for getting the pointer to the scratch area. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Pointer to the scratch area. */ __STATIC_INLINE uint32_t * nrf_ccm_stratchptr_get(NRF_CCM_Type const * p_reg); #if defined(CCM_RATEOVERRIDE_RATEOVERRIDE_Pos) || defined(__NRFX_DOXYGEN__) /** * @brief Function for setting the data rate override value. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] datarate Override value to be applied when the RATEOVERRIDE task * is triggered. */ __STATIC_INLINE void nrf_ccm_datarate_override_set(NRF_CCM_Type * p_reg, nrf_ccm_datarate_t datarate); #endif // defined(CCM_RATEOVERRIDE_RATEOVERRIDE_Pos) || defined(__NRFX_DOXYGEN__) #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_ccm_task_trigger(NRF_CCM_Type * p_reg, nrf_ccm_task_t task) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE uint32_t nrf_ccm_task_address_get(NRF_CCM_Type const * p_reg, nrf_ccm_task_t task) { return ((uint32_t)p_reg + (uint32_t)task); } __STATIC_INLINE void nrf_ccm_event_clear(NRF_CCM_Type * p_reg, nrf_ccm_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)); (void)dummy; #endif } __STATIC_INLINE bool nrf_ccm_event_check(NRF_CCM_Type const * p_reg, nrf_ccm_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE uint32_t nrf_ccm_event_address_get(NRF_CCM_Type const * p_reg, nrf_ccm_event_t event) { return ((uint32_t)p_reg + (uint32_t)event); } __STATIC_INLINE void nrf_ccm_int_enable(NRF_CCM_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } __STATIC_INLINE void nrf_ccm_int_disable(NRF_CCM_Type * p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } __STATIC_INLINE bool nrf_ccm_int_enable_check(NRF_CCM_Type const * p_reg, nrf_ccm_int_mask_t ccm_int) { return (bool)(p_reg->INTENSET & ccm_int); } __STATIC_INLINE void nrf_ccm_enable(NRF_CCM_Type * p_reg) { p_reg->ENABLE = (CCM_ENABLE_ENABLE_Enabled << CCM_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_ccm_disable(NRF_CCM_Type * p_reg) { p_reg->ENABLE = (CCM_ENABLE_ENABLE_Disabled << CCM_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_ccm_configure(NRF_CCM_Type * p_reg, nrf_ccm_config_t const * p_config) { p_reg->MODE = (((uint32_t)p_config->mode << CCM_MODE_MODE_Pos) | #if defined(CCM_MODE_DATARATE_Pos) ((uint32_t)p_config->datarate << CCM_MODE_DATARATE_Pos) | #endif #if defined(CCM_MODE_LENGTH_Pos) ((uint32_t)p_config->length << CCM_MODE_LENGTH_Pos) | #endif 0); } #if defined(CCM_MAXPACKETSIZE_MAXPACKETSIZE_Pos) __STATIC_INLINE void nrf_ccm_maxpacketsize_set(NRF_CCM_Type * p_reg, uint8_t size) { NRFX_ASSERT((size >= 0x1B) && (size <= 0xFB)); p_reg->MAXPACKETSIZE = size; } #endif // defined(CCM_MAXPACKETSIZE_MAXPACKETSIZE_Pos) __STATIC_INLINE bool nrf_ccm_micstatus_get(NRF_CCM_Type const * p_reg) { return (bool)(p_reg->MICSTATUS); } __STATIC_INLINE void nrf_ccm_cnfptr_set(NRF_CCM_Type * p_reg, uint32_t const * p_data) { p_reg->CNFPTR = (uint32_t)p_data; } __STATIC_INLINE uint32_t * nrf_ccm_cnfptr_get(NRF_CCM_Type const * p_reg) { return (uint32_t *)(p_reg->CNFPTR); } __STATIC_INLINE void nrf_ccm_inptr_set(NRF_CCM_Type * p_reg, uint32_t const * p_data) { p_reg->INPTR = (uint32_t)p_data; } __STATIC_INLINE uint32_t * nrf_ccm_inptr_get(NRF_CCM_Type const * p_reg) { return (uint32_t *)(p_reg->INPTR); } __STATIC_INLINE void nrf_ccm_outptr_set(NRF_CCM_Type * p_reg, uint32_t const * p_data) { p_reg->OUTPTR = (uint32_t)p_data; } __STATIC_INLINE uint32_t * nrf_ccm_outptr_get(NRF_CCM_Type const * p_reg) { return (uint32_t *)(p_reg->OUTPTR); } __STATIC_INLINE void nrf_ccm_scratchptr_set(NRF_CCM_Type * p_reg, uint32_t const * p_area) { p_reg->SCRATCHPTR = (uint32_t)p_area; } __STATIC_INLINE uint32_t * nrf_ccm_stratchptr_get(NRF_CCM_Type const * p_reg) { return (uint32_t *)(p_reg->SCRATCHPTR); } #if defined(CCM_RATEOVERRIDE_RATEOVERRIDE_Pos) __STATIC_INLINE void nrf_ccm_datarate_override_set(NRF_CCM_Type * p_reg, nrf_ccm_datarate_t datarate) { p_reg->RATEOVERRIDE = ((uint32_t)datarate << CCM_RATEOVERRIDE_RATEOVERRIDE_Pos); } #endif #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif // NRF_CCM_H__