/** * Copyright (c) 2016 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_CSENSE_MACROS_H__ #define NRF_CSENSE_MACROS_H__ /** @file * * @defgroup nrf_csense_macros Capacitive sensor macros * @{ * @ingroup nrf_csense * * @brief A set of macros to facilitate creation of a new capacitive sensor instance. */ #define NRF_CSENSE_INTERNAL_BUTTON_DEF(name, p1) \ static nrf_csense_pad_t CONCAT_2(name, _pad) = \ { \ .p_next_pad = NULL, \ .threshold = GET_ARG_2 p1, \ .pad_index = 0, \ .analog_input_number = GET_ARG_1 p1 \ }; \ static nrf_csense_min_max_t CONCAT_2(name, _minmax); \ static nrf_csense_instance_t name = \ { \ .p_nrf_csense_pad = &CONCAT_2(name, _pad), \ .min_max = &CONCAT_2(name, _minmax), \ .steps = 1, \ .number_of_pads = 1, \ .is_active = false, \ .is_touched = false \ }; #define NRF_CSENSE_INTERNAL_SLIDER_2_DEF(name, steps_no, p1, p2) \ static nrf_csense_pad_t CONCAT_2(name, _pad)[2] = \ { \ { \ .p_next_pad = &CONCAT_2(name, _pad)[1], \ .threshold = GET_ARG_2 p1, \ .pad_index = 0, \ .analog_input_number = GET_ARG_1 p1 \ }, \ { \ .p_next_pad = NULL, \ .threshold = GET_ARG_2 p2, \ .pad_index = 1, \ .analog_input_number = GET_ARG_1 p2 \ } \ }; \ \ static nrf_csense_min_max_t CONCAT_2(name, _minmax)[2]; \ static nrf_csense_instance_t name = \ { \ .p_nrf_csense_pad = CONCAT_2(name, _pad), \ .min_max = CONCAT_2(name, _minmax), \ .steps = steps_no, \ .number_of_pads = 2, \ .is_active = false, \ .is_touched = false \ }; #define NRF_CSENSE_INTERNAL_SLIDER_3_DEF(name, steps_no, p1, p2, p3) \ static nrf_csense_pad_t CONCAT_2(name, _pad)[3] = \ { \ { \ .p_next_pad = &CONCAT_2(name, _pad)[1], \ .threshold = GET_ARG_2 p1, \ .pad_index = 0, \ .analog_input_number = GET_ARG_1 p1 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[2], \ .threshold = GET_ARG_2 p2, \ .pad_index = 1, \ .analog_input_number = GET_ARG_1 p2 \ }, \ { \ .p_next_pad = NULL, \ .threshold = GET_ARG_2 p3, \ .pad_index = 2, \ .analog_input_number = GET_ARG_1 p3 \ } \ }; \ \ static nrf_csense_min_max_t CONCAT_2(name, _minmax)[3]; \ static nrf_csense_instance_t name = \ { \ .p_nrf_csense_pad = CONCAT_2(name, _pad), \ .min_max = CONCAT_2(name, _minmax), \ .steps = steps_no, \ .number_of_pads = 3, \ .is_active = false, \ .is_touched = false \ }; #define NRF_CSENSE_INTERNAL_SLIDER_4_DEF(name, steps_no, p1, p2, p3, p4) \ static nrf_csense_pad_t CONCAT_2(name, _pad)[4] = \ { \ { \ .p_next_pad = &CONCAT_2(name, _pad)[1], \ .threshold = GET_ARG_2 p1, \ .pad_index = 0, \ .analog_input_number = GET_ARG_1 p1 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[2], \ .threshold = GET_ARG_2 p2, \ .pad_index = 1, \ .analog_input_number = GET_ARG_1 p2 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[3], \ .threshold = GET_ARG_2 p3, \ .pad_index = 2, \ .analog_input_number = GET_ARG_1 p3 \ }, \ { \ .p_next_pad = NULL, \ .threshold = GET_ARG_2 p4, \ .pad_index = 3, \ .analog_input_number = GET_ARG_1 p4 \ } \ }; \ static nrf_csense_min_max_t CONCAT_2(name, _minmax)[4]; \ static nrf_csense_instance_t name = \ { \ .p_nrf_csense_pad = CONCAT_2(name, _pad), \ .min_max = CONCAT_2(name, _minmax), \ .steps = steps_no, \ .number_of_pads = 4, \ .is_active = false, \ .is_touched = false \ }; #define NRF_CSENSE_INTERNAL_SLIDER_5_DEF(name, steps_no, p1, p2, p3, p4, p5) \ static nrf_csense_pad_t CONCAT_2(name, _pad)[5] = \ { \ { \ .p_next_pad = &CONCAT_2(name, _pad)[1], \ .threshold = GET_ARG_2 p1, \ .pad_index = 0, \ .analog_input_number = GET_ARG_1 p1 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[2], \ .threshold = GET_ARG_2 p2, \ .pad_index = 1, \ .analog_input_number = GET_ARG_1 p2 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[3], \ .threshold = GET_ARG_2 p3, \ .pad_index = 2, \ .analog_input_number = GET_ARG_1 p3 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[4], \ .threshold = GET_ARG_2 p4, \ .pad_index = 3, \ .analog_input_number = GET_ARG_1 p4 \ }, \ { \ .p_next_pad = NULL, \ .threshold = GET_ARG_2 p5, \ .pad_index = 4, \ .analog_input_number = GET_ARG_1 p5 \ } \ }; \ \ static nrf_csense_min_max_t CONCAT_2(name, _minmax)[5]; \ static nrf_csense_instance_t name = \ { \ .p_nrf_csense_pad = CONCAT_2(name, _pad), \ .min_max = CONCAT_2(name, _minmax), \ .steps = steps_no, \ .number_of_pads = 5, \ .is_active = false, \ .is_touched = false \ }; #define NRF_CSENSE_INTERNAL_WHEEL_3_DEF(name, steps_no, p1, p2, p3) \ static nrf_csense_pad_t CONCAT_2(name, _pad)[4] = \ { \ { \ .p_next_pad = &CONCAT_2(name, _pad)[1], \ .threshold = GET_ARG_2 p1, \ .pad_index = 0, \ .analog_input_number = GET_ARG_1 p1 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[2], \ .threshold = GET_ARG_2 p2, \ .pad_index = 1, \ .analog_input_number = GET_ARG_1 p2 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[3], \ .threshold = GET_ARG_2 p3, \ .pad_index = 2, \ .analog_input_number = GET_ARG_1 p3 \ }, \ { \ .p_next_pad = NULL, \ .threshold = GET_ARG_2 p1, \ .pad_index = 3, \ .analog_input_number = GET_ARG_1 p1 \ } \ }; \ \ static nrf_csense_min_max_t CONCAT_2(name, _minmax)[4]; \ static nrf_csense_instance_t name = \ { \ .p_nrf_csense_pad = CONCAT_2(name, _pad), \ .min_max = CONCAT_2(name, _minmax), \ .steps = steps_no, \ .number_of_pads = 4, \ .is_active = false, \ .is_touched = false \ }; #define NRF_CSENSE_INTERNAL_WHEEL_4_DEF(name, steps_no, p1, p2, p3, p4) \ static nrf_csense_pad_t CONCAT_2(name, _pad)[5] = \ { \ { \ .p_next_pad = &CONCAT_2(name, _pad)[1], \ .threshold = GET_ARG_2 p1, \ .pad_index = 0, \ .analog_input_number = GET_ARG_1 p1 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[2], \ .threshold = GET_ARG_2 p2, \ .pad_index = 1, \ .analog_input_number = GET_ARG_1 p2 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[3], \ .threshold = GET_ARG_2 p3, \ .pad_index = 2, \ .analog_input_number = GET_ARG_1 p3 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[4], \ .threshold = GET_ARG_2 p4, \ .pad_index = 3, \ .analog_input_number = GET_ARG_1 p4 \ }, \ { \ .p_next_pad = NULL, \ .threshold = GET_ARG_2 p1, \ .pad_index = 4, \ .analog_input_number = GET_ARG_1 p1 \ } \ }; \ \ static nrf_csense_min_max_t CONCAT_2(name, _minmax)[5]; \ static nrf_csense_instance_t name = \ { \ .p_nrf_csense_pad = CONCAT_2(name, _pad), \ .min_max = CONCAT_2(name, _minmax), \ .steps = steps_no, \ .number_of_pads = 5, \ .is_active = false, \ .is_touched = false \ }; #define NRF_CSENSE_INTERNAL_WHEEL_5_DEF(name, steps_no, p1, p2, p3, p4, p5)\ static nrf_csense_pad_t CONCAT_2(name, _pad)[6] = \ { \ { \ .p_next_pad = &CONCAT_2(name, _pad)[1], \ .threshold = GET_ARG_2 p1, \ .pad_index = 0, \ .analog_input_number = GET_ARG_1 p1 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[2], \ .threshold = GET_ARG_2 p2, \ .pad_index = 1, \ .analog_input_number = GET_ARG_1 p2 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[3], \ .threshold = GET_ARG_2 p3, \ .pad_index = 2, \ .analog_input_number = GET_ARG_1 p3 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[4], \ .threshold = GET_ARG_2 p4, \ .pad_index = 3, \ .analog_input_number = GET_ARG_1 p4 \ }, \ { \ .p_next_pad = &CONCAT_2(name, _pad)[5], \ .threshold = GET_ARG_2 p5, \ .pad_index = 4, \ .analog_input_number = GET_ARG_1 p5 \ }, \ { \ .p_next_pad = NULL, \ .threshold = GET_ARG_2 p1, \ .pad_index = 5, \ .analog_input_number = GET_ARG_1 p1 \ } \ }; \ \ static nrf_csense_min_max_t CONCAT_2(name, _minmax)[6]; \ static nrf_csense_instance_t name = \ { \ .p_nrf_csense_pad = CONCAT_2(name, _pad), \ .min_max = CONCAT_2(name, _minmax), \ .steps = steps_no, \ .number_of_pads = 6, \ .is_active = false, \ .is_touched = false \ }; /** @} */ #endif // NRF_CSENSE_MACROS_H__