/** * Copyright (c) 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "nrf21540_spi.h" #include #include "nrf_assert.h" #include "boards.h" #include "nrf_ppi.h" #include "nrf21540_defs.h" #include "nrf_timer.h" #if NRF21540_USE_SPI_MANAGEMENT static uint8_t m_spi_tx_data[NRF21540_SPI_LENGTH_BYTES]; ///< SPI tx buffer. static uint8_t m_spi_rx_data[NRF21540_SPI_LENGTH_BYTES]; ///< SPI rx buffer. static volatile bool m_spi_xfer_done; ///< Flag indicates that SPI completed the transfer. /**@brief Structure keeps content of important registers of nRF21540. * * @details Driver keeps this data because it needs to operate at single bits * included in these registers (otherwise it should read it content * during every operation). */ static struct { uint8_t CONFREG0; ///< CONFREG0 register's content. uint8_t CONFREG1; ///< CONFREG1 register's content. } m_confreg_statics; static const nrfx_spim_t spi = NRFX_SPIM_INSTANCE(NRF21540_SPIM_NO); /**< SPI instance. */ /**@brief Function waits for SPI transfer has finished * * @details Used in blocking mode transfer */ static inline void wait_for_transfer_end(void) { while (!m_spi_xfer_done) {} m_spi_xfer_done = false; } /**@brief Handler called by nrfx driver when SPI event occurs. * * @param[in] p_event Event which triggers the handler. * @param[in] p_context Context. */ static void spim_event_handler(nrfx_spim_evt_t const *p_event, void *p_context) { m_spi_xfer_done = true; } /**@brief Function reads the content of nRF21540 chip register. * * @details Preparation of read register operation. Every register has one byte size. * * @param[in] reg Register address to read. * @param[in] mode if NRF21540_EXEC_MODE_BLOCKING the function will wait for data * received. * @param[in] start_now if enabled, transmision immediately initialized, * otherwise transfer will be triggered by external event. */ static uint8_t spi_reg_read(nrf21540_reg_t reg, nrf21540_execution_mode_t mode, bool start_now) { ASSERT(!(mode == NRF21540_EXEC_MODE_BLOCKING && start_now == false)); nrfx_spim_xfer_desc_t xfer_desc = NRFX_SPIM_XFER_TRX(m_spi_tx_data, NRF21540_SPI_LENGTH_BYTES, m_spi_rx_data, NRF21540_SPI_LENGTH_BYTES); m_spi_tx_data[NRF21540_SPI_COMMAND_ADDR_BYTE] = (NRF21540_SPI_COMMAND_READ << NRF21540_SPI_COMMAND_Pos) | (reg << NRF21540_SPI_REG_Pos); (void)nrfx_spim_xfer(&spi, &xfer_desc, 0); if (mode == NRF21540_EXEC_MODE_BLOCKING) { wait_for_transfer_end(); } return m_spi_rx_data[NRF21540_SPI_DATA_BYTE]; } /**@brief Function writes the content of nRF21540 chip register. * * @details Preparation of data to send. Every register has one byte size. * * @param[in] reg Register address to write. * @param[in] data Data to write. * @param[in] mode if NRF21540_EXEC_MODE_BLOCKING the function will wait for transfer * finished after sending data. * @param[in] start_now if enabled, transmision immediately initialized, * otherwise transfer will be triggered by external event. */ static void spi_reg_write(nrf21540_reg_t reg, uint8_t data, nrf21540_execution_mode_t mode, bool start_now) { ASSERT(!(mode == NRF21540_EXEC_MODE_BLOCKING && start_now == false)); nrfx_spim_xfer_desc_t xfer_desc = NRFX_SPIM_XFER_TRX(m_spi_tx_data, NRF21540_SPI_LENGTH_BYTES, m_spi_rx_data, NRF21540_SPI_LENGTH_BYTES); m_spi_tx_data[NRF21540_SPI_COMMAND_ADDR_BYTE] = (NRF21540_SPI_COMMAND_WRITE << NRF21540_SPI_COMMAND_Pos) | (reg << NRF21540_SPI_REG_Pos); m_spi_tx_data[NRF21540_SPI_DATA_BYTE] = data; uint32_t flags = start_now ? 0 : NRFX_SPIM_FLAG_HOLD_XFER; (void)nrfx_spim_xfer(&spi, &xfer_desc, flags); if (mode == NRF21540_EXEC_MODE_BLOCKING) { wait_for_transfer_end(); } } /**@brief Function reads content of important nRF21540's registers and stores * it to dedicated structure (@ref m_confreg_statics). * * @return Return NRF based error code. */ static ret_code_t m_confreg_statics_content_update(void) { ret_code_t ret = nrf21540_pdn_drive(true, NRF21540_EXEC_MODE_BLOCKING); if (ret != NRF_SUCCESS) { return ret; } m_confreg_statics.CONFREG0 = spi_reg_read(NRF21540_REG_CONFREG0, NRF21540_EXEC_MODE_BLOCKING, true); m_confreg_statics.CONFREG1 = spi_reg_read(NRF21540_REG_CONFREG1, NRF21540_EXEC_MODE_BLOCKING, true); return nrf21540_pdn_drive(false, NRF21540_EXEC_MODE_BLOCKING); } ret_code_t nrf21540_spi_init(void) { ret_code_t ret; nrfx_spim_config_t spi_config = NRFX_SPIM_DEFAULT_CONFIG; spi_config.frequency = NRF_SPIM_FREQ_4M; spi_config.ss_pin = NRF21540_CS_PIN; spi_config.miso_pin = NRF21540_MISO_PIN; spi_config.mosi_pin = NRF21540_MOSI_PIN; spi_config.sck_pin = NRF21540_CLK_PIN; spi_config.ss_active_high = false; ret = nrfx_spim_init(&spi, &spi_config, spim_event_handler, NULL); if (ret != NRFX_SUCCESS) { return NRF_ERROR_INTERNAL; } return m_confreg_statics_content_update(); } /**@brief Function enables or disables nRF21540 TX mode. * * @details Preparation of appropriate register content and tranfer initialization. * * @param[in] state NRF21540_DISABLE/NRF21540_ENABLE causes TX mode disabled/enabled. */ static void tx_en_drive(nrf21540_bool_state_t state) { uint8_t reg_val; if (state == NRF21540_ENABLE) { reg_val = m_confreg_statics.CONFREG0 | NRF21540_BITS_CONFREG0_TX_EN_Enable; } else { reg_val = m_confreg_statics.CONFREG0 &(~NRF21540_BITS_CONFREG0_TX_EN_Enable); } spi_reg_write(NRF21540_REG_CONFREG0, reg_val, NRF21540_EXEC_MODE_NON_BLOCKING, false); } /**@brief Function enables or disables nRF21540 RX mode. * * @details Preparation of appropriate register content and tranfer initialization. * * @param[in] state NRF21540_DISABLE/NRF21540_ENABLE causes RX mode disabled/enabled. */ static void rx_en_drive(nrf21540_bool_state_t state) { uint8_t reg_val; if (state == NRF21540_ENABLE) { reg_val = m_confreg_statics.CONFREG1 | NRF21540_BITS_CONFREG1_RX_EN_Enable; } else { reg_val = m_confreg_statics.CONFREG1 &(~NRF21540_BITS_CONFREG1_RX_EN_Disable); } spi_reg_write(NRF21540_REG_CONFREG1, reg_val, NRF21540_EXEC_MODE_NON_BLOCKING, false); } inline uint32_t nrf21540_spim_trx_task_start_address_get(void) { return nrfx_spim_start_task_get(&spi); } void nrf21540_spim_for_trx_configure(nrf21540_trx_t dir, nrf21540_bool_state_t required_state) { if (dir == NRF21540_TX) { tx_en_drive(required_state); } else { rx_en_drive(required_state); } if (required_state == NRF21540_ENABLE) { uint32_t task_start_address = nrfx_spim_start_task_get(&spi); nrf_ppi_channel_endpoint_setup(NRF21540_TRX_PPI_CHANNEL, (uint32_t)nrf_timer_event_address_get(NRF21540_TIMER, NRF21540_TIMER_CC_PD_PG_EVENT), task_start_address); nrf_ppi_channel_enable(NRF21540_TRX_PPI_CHANNEL); } } ret_code_t nrf21540_spi_pwr_mode_set(nrf21540_pwr_mode_t mode) { if (mode == NRF21540_PWR_MODE_A) { spi_reg_write(NRF21540_REG_CONFREG0, NRF21540_BITS_CONFREG0_MODE_0, NRF21540_EXEC_MODE_BLOCKING, true); } else if (mode == NRF21540_PWR_MODE_B) { spi_reg_write(NRF21540_REG_CONFREG0, NRF21540_BITS_CONFREG0_MODE_1, NRF21540_EXEC_MODE_BLOCKING, true); } else { return NRF_ERROR_INVALID_PARAM; } return NRF_SUCCESS; } #endif /*NRF21540_USE_SPI_MANAGEMENT*/