/** * Copyright (c) 2012 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_ECB_H__ #define NRF_ECB_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_ecb_drv AES ECB encryption driver * @{ * @ingroup nrf_ecb * @brief Driver for the AES Electronic Code Book (ECB) peripheral. * * To encrypt data, the peripheral must first be powered on * using @ref nrf_ecb_init. Next, the key must be set using @ref nrf_ecb_set_key. */ /** * @brief Function for initializing and powering on the ECB peripheral. * * This function allocates memory for the ECBDATAPTR. * @retval true If initialization was successful. * @retval false If powering on failed. */ bool nrf_ecb_init(void); /** * @brief Function for encrypting 16-byte data using current key. * * This function avoids unnecessary copying of data if the parameters point to the * correct locations in the ECB data structure. * * @param dst Result of encryption, 16 bytes will be written. * @param src Source with 16-byte data to be encrypted. * * @retval true If the encryption operation completed. * @retval false If the encryption operation did not complete. */ bool nrf_ecb_crypt(uint8_t * dst, const uint8_t * src); /** * @brief Function for setting the key to be used for encryption. * * @param key Pointer to the key. 16 bytes will be read. */ void nrf_ecb_set_key(const uint8_t * key); /** @} */ /** * @defgroup nrf_ecb_hal AES ECB encryption HAL * @{ * @ingroup nrf_ecb * @brief Hardware access layer for managing the AES Electronic Codebook (ECB) peripheral. */ /** * @brief ECB tasks. */ typedef enum { /*lint -save -e30 -esym(628,__INTADDR__)*/ NRF_ECB_TASK_STARTECB = offsetof(NRF_ECB_Type, TASKS_STARTECB), /**< Task for starting ECB block encryption. */ NRF_ECB_TASK_STOPECB = offsetof(NRF_ECB_Type, TASKS_STOPECB), /**< Task for stopping ECB block encryption. */ /*lint -restore*/ } nrf_ecb_task_t; /** * @brief ECB events. */ typedef enum { /*lint -save -e30*/ NRF_ECB_EVENT_ENDECB = offsetof(NRF_ECB_Type, EVENTS_ENDECB), /**< ECB block encrypt complete. */ NRF_ECB_EVENT_ERRORECB = offsetof(NRF_ECB_Type, EVENTS_ERRORECB), /**< ECB block encrypt aborted because of a STOPECB task or due to an error. */ /*lint -restore*/ } nrf_ecb_event_t; /** * @brief ECB interrupts. */ typedef enum { NRF_ECB_INT_ENDECB_MASK = ECB_INTENSET_ENDECB_Msk, ///< Interrupt on ENDECB event. NRF_ECB_INT_ERRORECB_MASK = ECB_INTENSET_ERRORECB_Msk, ///< Interrupt on ERRORECB event. } nrf_ecb_int_mask_t; /** * @brief Function for activating a specific ECB task. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] task Task to activate. */ __STATIC_INLINE void nrf_ecb_task_trigger(NRF_ECB_Type * p_reg, nrf_ecb_task_t task); /** * @brief Function for getting the address of a specific ECB task register. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] task Requested task. * * @return Address of the specified task register. */ __STATIC_INLINE uint32_t nrf_ecb_task_address_get(NRF_ECB_Type const * p_reg, nrf_ecb_task_t task); /** * @brief Function for clearing a specific ECB event. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] event Event to clear. */ __STATIC_INLINE void nrf_ecb_event_clear(NRF_ECB_Type * p_reg, nrf_ecb_event_t event); /** * @brief Function for checking the state of a specific ECB event. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] event Event to check. * * @retval true If the event is set. * @retval false If the event is not set. */ __STATIC_INLINE bool nrf_ecb_event_check(NRF_ECB_Type const * p_reg, nrf_ecb_event_t event); /** * @brief Function for getting the address of a specific ECB event register. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] event Requested event. * * @return Address of the specified event register. */ __STATIC_INLINE uint32_t nrf_ecb_event_address_get(NRF_ECB_Type const * p_reg, nrf_ecb_event_t event); /** * @brief Function for enabling specified interrupts. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] mask Interrupts to enable. */ __STATIC_INLINE void nrf_ecb_int_enable(NRF_ECB_Type * p_reg, uint32_t mask); /** * @brief Function for disabling specified interrupts. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] mask Interrupts to disable. */ __STATIC_INLINE void nrf_ecb_int_disable(NRF_ECB_Type * p_reg, uint32_t mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] ecb_int Interrupt to check. * * @retval true If the interrupt is enabled. * @retval false If the interrupt is not enabled. */ __STATIC_INLINE bool nrf_ecb_int_enable_check(NRF_ECB_Type const * p_reg, nrf_ecb_int_mask_t ecb_int); /** * @brief Function for setting the pointer to the ECB data buffer. * * @note The buffer has to be placed in the Data RAM region. * For description of the data structure in this buffer, see the Product Specification. * * @param[in] p_reg Pointer to the peripheral register structure. * @param[in] p_buffer Pointer to the ECB data buffer. */ __STATIC_INLINE void nrf_ecb_data_pointer_set(NRF_ECB_Type * p_reg, void const * p_buffer); /** * @brief Function for getting the pointer to the ECB data buffer. * * @param[in] p_reg Pointer to the peripheral register structure. * * @return Pointer to the ECB data buffer. */ __STATIC_INLINE void * nrf_ecb_data_pointer_get(NRF_ECB_Type const * p_reg); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_ecb_task_trigger(NRF_ECB_Type * p_reg, nrf_ecb_task_t task) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE uint32_t nrf_ecb_task_address_get(NRF_ECB_Type const * p_reg, nrf_ecb_task_t task) { return ((uint32_t)p_reg + (uint32_t)task); } __STATIC_INLINE void nrf_ecb_event_clear(NRF_ECB_Type * p_reg, nrf_ecb_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)); (void)dummy; #endif } __STATIC_INLINE bool nrf_ecb_event_check(NRF_ECB_Type const * p_reg, nrf_ecb_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE uint32_t nrf_ecb_event_address_get(NRF_ECB_Type const * p_reg, nrf_ecb_event_t event) { return ((uint32_t)p_reg + (uint32_t)event); } __STATIC_INLINE void nrf_ecb_int_enable(NRF_ECB_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } __STATIC_INLINE void nrf_ecb_int_disable(NRF_ECB_Type * p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } __STATIC_INLINE bool nrf_ecb_int_enable_check(NRF_ECB_Type const * p_reg, nrf_ecb_int_mask_t ecb_int) { return (bool)(p_reg->INTENSET & ecb_int); } __STATIC_INLINE void nrf_ecb_data_pointer_set(NRF_ECB_Type * p_reg, void const * p_buffer) { p_reg->ECBDATAPTR = (uint32_t)p_buffer; } __STATIC_INLINE void * nrf_ecb_data_pointer_get(NRF_ECB_Type const * p_reg) { return (void *)(p_reg->ECBDATAPTR); } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif // NRF_ECB_H__