/** * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_ADC_H_ #define NRF_ADC_H_ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_adc_hal ADC HAL * @{ * @ingroup nrf_adc * @brief Hardware access layer for managing the Analog-to-Digital Converter (ADC) * peripheral. */ /** @brief ADC interrupts. */ typedef enum { NRF_ADC_INT_END_MASK = ADC_INTENSET_END_Msk, /**< ADC interrupt on END event. */ } nrf_adc_int_mask_t; /** @brief Resolution of the analog-to-digital converter. */ typedef enum { NRF_ADC_CONFIG_RES_8BIT = ADC_CONFIG_RES_8bit, /**< 8-bit resolution. */ NRF_ADC_CONFIG_RES_9BIT = ADC_CONFIG_RES_9bit, /**< 9-bit resolution. */ NRF_ADC_CONFIG_RES_10BIT = ADC_CONFIG_RES_10bit, /**< 10-bit resolution. */ } nrf_adc_config_resolution_t; /** @brief Scaling factor of the analog-to-digital conversion. */ typedef enum { NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE = ADC_CONFIG_INPSEL_AnalogInputNoPrescaling, /**< Full scale input. */ NRF_ADC_CONFIG_SCALING_INPUT_TWO_THIRDS = ADC_CONFIG_INPSEL_AnalogInputTwoThirdsPrescaling, /**< 2/3 scale input. */ NRF_ADC_CONFIG_SCALING_INPUT_ONE_THIRD = ADC_CONFIG_INPSEL_AnalogInputOneThirdPrescaling, /**< 1/3 scale input. */ NRF_ADC_CONFIG_SCALING_SUPPLY_TWO_THIRDS = ADC_CONFIG_INPSEL_SupplyTwoThirdsPrescaling, /**< 2/3 of supply. */ NRF_ADC_CONFIG_SCALING_SUPPLY_ONE_THIRD = ADC_CONFIG_INPSEL_SupplyOneThirdPrescaling /**< 1/3 of supply. */ } nrf_adc_config_scaling_t; /** * @brief External reference selection of the analog-to-digital converter. */ typedef enum { NRF_ADC_CONFIG_EXTREFSEL_NONE = ADC_CONFIG_EXTREFSEL_None, /**< Analog reference inputs disabled. */ NRF_ADC_CONFIG_EXTREFSEL_AREF0 = ADC_CONFIG_EXTREFSEL_AnalogReference0, /**< AREF0 as analog reference. */ NRF_ADC_CONFIG_EXTREFSEL_AREF1 = ADC_CONFIG_EXTREFSEL_AnalogReference1 /**< AREF1 as analog reference. */ } nrf_adc_config_extref_t; /** * @brief Reference selection of the analog-to-digital converter. */ typedef enum { NRF_ADC_CONFIG_REF_VBG = ADC_CONFIG_REFSEL_VBG, /**< 1.2 V reference. */ NRF_ADC_CONFIG_REF_SUPPLY_ONE_HALF = ADC_CONFIG_REFSEL_SupplyOneHalfPrescaling, /**< 1/2 of power supply. */ NRF_ADC_CONFIG_REF_SUPPLY_ONE_THIRD = ADC_CONFIG_REFSEL_SupplyOneThirdPrescaling, /**< 1/3 of power supply. */ NRF_ADC_CONFIG_REF_EXT = ADC_CONFIG_REFSEL_External /**< External reference. See @ref nrf_adc_config_extref_t for further configuration.*/ } nrf_adc_config_reference_t; /** @brief Input selection of the analog-to-digital converter. */ typedef enum { NRF_ADC_CONFIG_INPUT_DISABLED = ADC_CONFIG_PSEL_Disabled, /**< No input selected. */ NRF_ADC_CONFIG_INPUT_0 = ADC_CONFIG_PSEL_AnalogInput0, /**< Input 0. */ NRF_ADC_CONFIG_INPUT_1 = ADC_CONFIG_PSEL_AnalogInput1, /**< Input 1. */ NRF_ADC_CONFIG_INPUT_2 = ADC_CONFIG_PSEL_AnalogInput2, /**< Input 2. */ NRF_ADC_CONFIG_INPUT_3 = ADC_CONFIG_PSEL_AnalogInput3, /**< Input 3. */ NRF_ADC_CONFIG_INPUT_4 = ADC_CONFIG_PSEL_AnalogInput4, /**< Input 4. */ NRF_ADC_CONFIG_INPUT_5 = ADC_CONFIG_PSEL_AnalogInput5, /**< Input 5. */ NRF_ADC_CONFIG_INPUT_6 = ADC_CONFIG_PSEL_AnalogInput6, /**< Input 6. */ NRF_ADC_CONFIG_INPUT_7 = ADC_CONFIG_PSEL_AnalogInput7, /**< Input 7. */ } nrf_adc_config_input_t; /** @brief Analog-to-digital converter tasks. */ typedef enum { /*lint -save -e30*/ NRF_ADC_TASK_START = offsetof(NRF_ADC_Type, TASKS_START), /**< ADC start sampling task. */ NRF_ADC_TASK_STOP = offsetof(NRF_ADC_Type, TASKS_STOP) /**< ADC stop sampling task. */ /*lint -restore*/ } nrf_adc_task_t; /** @brief Analog-to-digital converter events. */ typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */ { /*lint -save -e30*/ NRF_ADC_EVENT_END = offsetof(NRF_ADC_Type, EVENTS_END) /**< End of a conversion event. */ /*lint -restore*/ } nrf_adc_event_t; /**@brief Analog-to-digital converter configuration. */ typedef struct { nrf_adc_config_resolution_t resolution; /**< ADC resolution. */ nrf_adc_config_scaling_t scaling; /**< ADC scaling factor. */ nrf_adc_config_reference_t reference; /**< ADC reference. */ nrf_adc_config_input_t input; /**< ADC input selection. */ nrf_adc_config_extref_t extref; /**< ADC external reference selection. */ } nrf_adc_config_t; /**@brief Analog-to-digital value type. */ typedef uint16_t nrf_adc_value_t; /** * @brief Function for activating a specific ADC task. * * @param[in] task Task to activate. */ __STATIC_INLINE void nrf_adc_task_trigger(nrf_adc_task_t task); /** * @brief Function for getting the address of an ADC task register. * * @param[in] task ADC task. * * @return Address of the specified ADC task. */ __STATIC_INLINE uint32_t nrf_adc_task_address_get(nrf_adc_task_t task); /** * @brief Function for checking the state of an ADC event. * * @param[in] event Event to check. * * @retval true If the event is set. * @retval false If the event is not set. */ __STATIC_INLINE bool nrf_adc_event_check(nrf_adc_event_t event); /** * @brief Function for clearing an ADC event. * * @param[in] event Event to clear. */ __STATIC_INLINE void nrf_adc_event_clear(nrf_adc_event_t event); /** * @brief Function for getting the address of a specific ADC event register. * * @param[in] adc_event ADC event. * * @return Address of the specified ADC event. */ __STATIC_INLINE uint32_t nrf_adc_event_address_get(nrf_adc_event_t adc_event); /** * @brief Function for enabling the specified interrupts. * * @param[in] int_mask Interrupts to enable. */ __STATIC_INLINE void nrf_adc_int_enable(uint32_t int_mask); /** * @brief Function for disabling the specified interrupts. * * @param[in] int_mask Interrupts to disable. */ __STATIC_INLINE void nrf_adc_int_disable(uint32_t int_mask); /** * @brief Function for retrieving the state of the specified ADC interrupts. * * @param[in] int_mask Interrupts to check. * * @retval true If all specified interrupts are enabled. * @retval false If at least one of the given interrupts is not enabled. */ __STATIC_INLINE bool nrf_adc_int_enable_check(uint32_t int_mask); /** * @brief Function for checking whether the ADC is busy. * * This function checks whether the ADC converter is busy with a conversion. * * @retval true If the ADC is busy. * @retval false If the ADC is not busy. */ __STATIC_INLINE bool nrf_adc_busy_check(void); /** * @brief Function for enabling the ADC. * */ __STATIC_INLINE void nrf_adc_enable(void); /** * @brief Function for disabling the ADC. * */ __STATIC_INLINE void nrf_adc_disable(void); /** * @brief Function for checking if the ADC is enabled. * * @retval true If the ADC is enabled. * @retval false If the ADC is not enabled. */ __STATIC_INLINE bool nrf_adc_enable_check(void); /** * @brief Function for retrieving the ADC conversion result. * * This function retrieves and returns the last analog-to-digital conversion result. * * @return Last conversion result. */ __STATIC_INLINE nrf_adc_value_t nrf_adc_result_get(void); /** * @brief Function for initializing the ADC. * * This function writes data to ADC's CONFIG register. After the configuration, * the ADC is in DISABLE state and must be enabled before using it. * * @param[in] p_config Configuration parameters. */ __STATIC_INLINE void nrf_adc_init(nrf_adc_config_t const * p_config); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_adc_task_trigger(nrf_adc_task_t task) { *((volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE uint32_t nrf_adc_task_address_get(nrf_adc_task_t adc_task) { return (uint32_t)((uint8_t *)NRF_ADC + (uint32_t)adc_task); } __STATIC_INLINE bool nrf_adc_event_check(nrf_adc_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)event); } __STATIC_INLINE void nrf_adc_event_clear(nrf_adc_event_t event) { *((volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)event)) = 0x0UL; } __STATIC_INLINE uint32_t nrf_adc_event_address_get(nrf_adc_event_t adc_event) { return (uint32_t)((uint8_t *)NRF_ADC + (uint32_t)adc_event); } __STATIC_INLINE void nrf_adc_int_enable(uint32_t int_mask) { NRF_ADC->INTENSET = int_mask; } __STATIC_INLINE void nrf_adc_int_disable(uint32_t int_mask) { NRF_ADC->INTENCLR = int_mask; } __STATIC_INLINE bool nrf_adc_int_enable_check(uint32_t int_mask) { return (bool)(NRF_ADC->INTENSET & int_mask); } __STATIC_INLINE bool nrf_adc_busy_check(void) { return ((NRF_ADC->BUSY & ADC_BUSY_BUSY_Msk) == (ADC_BUSY_BUSY_Busy << ADC_BUSY_BUSY_Pos)); } __STATIC_INLINE void nrf_adc_enable(void) { NRF_ADC->ENABLE = (ADC_ENABLE_ENABLE_Enabled << ADC_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_adc_disable(void) { NRF_ADC->ENABLE = (ADC_ENABLE_ENABLE_Disabled << ADC_ENABLE_ENABLE_Pos); } __STATIC_INLINE bool nrf_adc_enable_check(void) { return (NRF_ADC->ENABLE == (ADC_ENABLE_ENABLE_Enabled << ADC_ENABLE_ENABLE_Pos)); } __STATIC_INLINE nrf_adc_value_t nrf_adc_result_get(void) { return (nrf_adc_value_t)NRF_ADC->RESULT; } __STATIC_INLINE void nrf_adc_init(nrf_adc_config_t const * p_config) { NRF_ADC->CONFIG = ((p_config->resolution << ADC_CONFIG_RES_Pos) & ADC_CONFIG_RES_Msk) |((p_config->scaling << ADC_CONFIG_INPSEL_Pos) & ADC_CONFIG_INPSEL_Msk) |((p_config->reference << ADC_CONFIG_REFSEL_Pos) & ADC_CONFIG_REFSEL_Msk) |((p_config->input << ADC_CONFIG_PSEL_Pos) & ADC_CONFIG_PSEL_Msk) |((p_config->extref << ADC_CONFIG_EXTREFSEL_Pos) & ADC_CONFIG_EXTREFSEL_Msk); } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif /* NRF_ADC_H_ */