/** * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRFX_RTC_H__ #define NRFX_RTC_H__ #include #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrfx_rtc RTC driver * @{ * @ingroup nrf_rtc * @brief Real Timer Counter (RTC) peripheral driver. */ /**@brief Macro to convert microseconds into ticks. */ #define NRFX_RTC_US_TO_TICKS(us,freq) (((us) * (freq)) / 1000000U) /**@brief RTC driver interrupt types. */ typedef enum { NRFX_RTC_INT_COMPARE0 = 0, /**< Interrupt from COMPARE0 event. */ NRFX_RTC_INT_COMPARE1 = 1, /**< Interrupt from COMPARE1 event. */ NRFX_RTC_INT_COMPARE2 = 2, /**< Interrupt from COMPARE2 event. */ NRFX_RTC_INT_COMPARE3 = 3, /**< Interrupt from COMPARE3 event. */ NRFX_RTC_INT_TICK = 4, /**< Interrupt from TICK event. */ NRFX_RTC_INT_OVERFLOW = 5 /**< Interrupt from OVERFLOW event. */ } nrfx_rtc_int_type_t; /**@brief RTC driver instance structure. */ typedef struct { NRF_RTC_Type * p_reg; /**< Pointer to instance register set. */ IRQn_Type irq; /**< Instance IRQ ID. */ uint8_t instance_id; /**< Instance index. */ uint8_t cc_channel_count; /**< Number of capture/compare channels. */ } nrfx_rtc_t; /**@brief Macro for creating RTC driver instance.*/ #define NRFX_RTC_INSTANCE(id) \ { \ .p_reg = NRFX_CONCAT_2(NRF_RTC, id), \ .irq = NRFX_CONCAT_3(RTC, id, _IRQn), \ .instance_id = NRFX_CONCAT_3(NRFX_RTC, id, _INST_IDX), \ .cc_channel_count = NRF_RTC_CC_CHANNEL_COUNT(id), \ } enum { #if NRFX_CHECK(NRFX_RTC0_ENABLED) NRFX_RTC0_INST_IDX, #endif #if NRFX_CHECK(NRFX_RTC1_ENABLED) NRFX_RTC1_INST_IDX, #endif #if NRFX_CHECK(NRFX_RTC2_ENABLED) NRFX_RTC2_INST_IDX, #endif NRFX_RTC_ENABLED_COUNT }; /**@brief RTC driver instance configuration structure. */ typedef struct { uint16_t prescaler; /**< Prescaler. */ uint8_t interrupt_priority; /**< Interrupt priority. */ uint8_t tick_latency; /**< Maximum length of interrupt handler in ticks (max 7.7 ms). */ bool reliable; /**< Reliable mode flag. */ } nrfx_rtc_config_t; /**@brief RTC instance default configuration. */ #define NRFX_RTC_DEFAULT_CONFIG \ { \ .prescaler = RTC_FREQ_TO_PRESCALER(NRFX_RTC_DEFAULT_CONFIG_FREQUENCY), \ .interrupt_priority = NRFX_RTC_DEFAULT_CONFIG_IRQ_PRIORITY, \ .reliable = NRFX_RTC_DEFAULT_CONFIG_RELIABLE, \ .tick_latency = NRFX_RTC_US_TO_TICKS(NRFX_RTC_MAXIMUM_LATENCY_US, \ NRFX_RTC_DEFAULT_CONFIG_FREQUENCY), \ } /**@brief RTC driver instance handler type. */ typedef void (*nrfx_rtc_handler_t)(nrfx_rtc_int_type_t int_type); /**@brief Function for initializing the RTC driver instance. * * After initialization, the instance is in power off state. * * @param[in] p_instance Pointer to the driver instance structure. * @param[in] p_config Pointer to the structure with initial configuration. * @param[in] handler Event handler provided by the user. * Must not be NULL. * * @retval NRFX_SUCCESS If successfully initialized. * @retval NRFX_ERROR_INVALID_STATE If the instance is already initialized. */ nrfx_err_t nrfx_rtc_init(nrfx_rtc_t const * const p_instance, nrfx_rtc_config_t const * p_config, nrfx_rtc_handler_t handler); /**@brief Function for uninitializing the RTC driver instance. * * After uninitialization, the instance is in idle state. The hardware should return to the state * before initialization. The function asserts if the instance is in idle state. * * @param[in] p_instance Pointer to the driver instance structure. */ void nrfx_rtc_uninit(nrfx_rtc_t const * const p_instance); /**@brief Function for enabling the RTC driver instance. * * @note Function asserts if instance is enabled. * * @param[in] p_instance Pointer to the driver instance structure. */ void nrfx_rtc_enable(nrfx_rtc_t const * const p_instance); /**@brief Function for disabling the RTC driver instance. * * @note Function asserts if instance is disabled. * * @param[in] p_instance Pointer to the driver instance structure. */ void nrfx_rtc_disable(nrfx_rtc_t const * const p_instance); /**@brief Function for setting a compare channel. * * The function asserts if the instance is not initialized or if the channel parameter is * wrong. The function powers on the instance if the instance was in power off state. * * The driver is not entering a critical section when configuring RTC, which means that it can be * preempted for a certain amount of time. When the driver was preempted and the value to be set * is short in time, there is a risk that the driver sets a compare value that is * behind. If RTCn_CONFIG_RELIABLE is 1 for the given instance, the Reliable mode handles that case. * However, to detect if the requested value is behind, this mode makes the following assumptions: * - The maximum preemption time in ticks (8 - bit value) is known and is less than 7.7 ms * (for prescaler = 0, RTC frequency 32 kHz). * - The requested absolute compare value is not bigger than (0x00FFFFFF) - tick_latency. It is * the user's responsibility to ensure that. * * @param[in] p_instance Pointer to the driver instance structure. * @param[in] channel One of the instance's channels. * @param[in] val Absolute value to be set in the compare register. * @param[in] enable_irq True to enable the interrupt. False to disable the interrupt. * * @retval NRFX_SUCCESS If the procedure was successful. * @retval NRFX_ERROR_TIMEOUT If the compare was not set because the request value is behind the current counter * value. This error can only be reported if RTCn_CONFIG_RELIABLE = 1. */ nrfx_err_t nrfx_rtc_cc_set(nrfx_rtc_t const * const p_instance, uint32_t channel, uint32_t val, bool enable_irq); /**@brief Function for disabling a channel. * * This function disables channel events and channel interrupts. The function asserts if the instance is not * initialized or if the channel parameter is wrong. * * @param[in] p_instance Pointer to the driver instance structure. * @param[in] channel One of the instance's channels. * * @retval NRFX_SUCCESS If the procedure was successful. * @retval NRFX_ERROR_TIMEOUT If an interrupt was pending on the requested channel. */ nrfx_err_t nrfx_rtc_cc_disable(nrfx_rtc_t const * const p_instance, uint32_t channel); /**@brief Function for enabling tick. * * This function enables the tick event and optionally the interrupt. The function asserts if the instance is not * powered on. * * @param[in] p_instance Pointer to the driver instance structure. * @param[in] enable_irq True to enable the interrupt. False to disable the interrupt. */ void nrfx_rtc_tick_enable(nrfx_rtc_t const * const p_instance, bool enable_irq); /**@brief Function for disabling tick. * * This function disables the tick event and interrupt. * * @param[in] p_instance Pointer to the driver instance structure. */ void nrfx_rtc_tick_disable(nrfx_rtc_t const * const p_instance); /**@brief Function for enabling overflow. * * This function enables the overflow event and optionally the interrupt. The function asserts if the instance is * not powered on. * * @param[in] p_instance Pointer to the driver instance structure. * @param[in] enable_irq True to enable the interrupt. False to disable the interrupt. */ void nrfx_rtc_overflow_enable(nrfx_rtc_t const * const p_instance, bool enable_irq); /**@brief Function for disabling overflow. * * This function disables the overflow event and interrupt. * * @param[in] p_instance Pointer to the driver instance structure. */ void nrfx_rtc_overflow_disable(nrfx_rtc_t const * const p_instance); /**@brief Function for getting the maximum relative ticks value that can be set in the compare channel. * * When a stack (for example SoftDevice) is used and it occupies high priority interrupts, * the application code can be interrupted at any moment for a certain period of time. * If Reliable mode is enabled, the provided maximum latency is taken into account * and the return value is smaller than the RTC counter resolution. * If Reliable mode is disabled, the return value equals the counter resolution. * * @param[in] p_instance Pointer to the driver instance structure. * * @retval ticks Maximum ticks value. */ uint32_t nrfx_rtc_max_ticks_get(nrfx_rtc_t const * const p_instance); /**@brief Function for disabling all instance interrupts. * * @param[in] p_instance Pointer to the driver instance structure. * @param[in] p_mask Pointer to the location where the mask is filled. */ __STATIC_INLINE void nrfx_rtc_int_disable(nrfx_rtc_t const * const p_instance, uint32_t * p_mask); /**@brief Function for enabling instance interrupts. * * @param[in] p_instance Pointer to the driver instance structure. * @param[in] mask Mask of interrupts to enable. */ __STATIC_INLINE void nrfx_rtc_int_enable(nrfx_rtc_t const * const p_instance, uint32_t mask); /**@brief Function for retrieving the current counter value. * * This function asserts if the instance is not powered on or if p_val is NULL. * * @param[in] p_instance Pointer to the driver instance structure. * * @retval value Counter value. */ __STATIC_INLINE uint32_t nrfx_rtc_counter_get(nrfx_rtc_t const * const p_instance); /**@brief Function for clearing the counter value. * * This function asserts if the instance is not powered on. * * @param[in] p_instance Pointer to the driver instance structure. */ __STATIC_INLINE void nrfx_rtc_counter_clear(nrfx_rtc_t const * const p_instance); /**@brief Function for returning a requested task address for the RTC driver instance. * * This function asserts if the output pointer is NULL. The task address can be used by the PPI module. * * @param[in] p_instance Pointer to the instance. * @param[in] task One of the peripheral tasks. * * @retval Address of task register. */ __STATIC_INLINE uint32_t nrfx_rtc_task_address_get(nrfx_rtc_t const * const p_instance, nrf_rtc_task_t task); /**@brief Function for returning a requested event address for the RTC driver instance. * * This function asserts if the output pointer is NULL. The event address can be used by the PPI module. * * @param[in] p_instance Pointer to the driver instance structure. * @param[in] event One of the peripheral events. * * @retval Address of event register. */ __STATIC_INLINE uint32_t nrfx_rtc_event_address_get(nrfx_rtc_t const * const p_instance, nrf_rtc_event_t event); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrfx_rtc_int_disable(nrfx_rtc_t const * const p_instance, uint32_t * p_mask) { *p_mask = nrf_rtc_int_get(p_instance->p_reg); nrf_rtc_int_disable(p_instance->p_reg, NRF_RTC_INT_TICK_MASK | NRF_RTC_INT_OVERFLOW_MASK | NRF_RTC_INT_COMPARE0_MASK | NRF_RTC_INT_COMPARE1_MASK | NRF_RTC_INT_COMPARE2_MASK | NRF_RTC_INT_COMPARE3_MASK); } __STATIC_INLINE void nrfx_rtc_int_enable(nrfx_rtc_t const * const p_instance, uint32_t mask) { nrf_rtc_int_enable(p_instance->p_reg, mask); } __STATIC_INLINE uint32_t nrfx_rtc_counter_get(nrfx_rtc_t const * const p_instance) { return nrf_rtc_counter_get(p_instance->p_reg); } __STATIC_INLINE void nrfx_rtc_counter_clear(nrfx_rtc_t const * const p_instance) { nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_CLEAR); } __STATIC_INLINE uint32_t nrfx_rtc_task_address_get(nrfx_rtc_t const * const p_instance, nrf_rtc_task_t task) { return nrf_rtc_task_address_get(p_instance->p_reg, task); } __STATIC_INLINE uint32_t nrfx_rtc_event_address_get(nrfx_rtc_t const * const p_instance, nrf_rtc_event_t event) { return nrf_rtc_event_address_get(p_instance->p_reg, event); } #endif // SUPPRESS_INLINE_IMPLEMENTATION void nrfx_rtc_0_irq_handler(void); void nrfx_rtc_1_irq_handler(void); void nrfx_rtc_2_irq_handler(void); /** @} */ #ifdef __cplusplus } #endif #endif // NRFX_RTC_H__