// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "sccb.h" #include "gc2145.h" #include "gc2145_regs.h" #include "gc2145_settings.h" #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG) #include "esp32-hal-log.h" #else #include "esp_log.h" static const char *TAG = "gc2145"; #endif #define H8(v) ((v)>>8) #define L8(v) ((v)&0xff) //#define REG_DEBUG_ON static int read_reg(uint8_t slv_addr, const uint16_t reg) { int ret = SCCB_Read(slv_addr, reg); #ifdef REG_DEBUG_ON if (ret < 0) { ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret); } #endif return ret; } static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value) { int ret = 0; #ifndef REG_DEBUG_ON ret = SCCB_Write(slv_addr, reg, value); #else int old_value = read_reg(slv_addr, reg); if (old_value < 0) { return old_value; } if ((uint8_t)old_value != value) { ESP_LOGI(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value); ret = SCCB_Write(slv_addr, reg, value); } else { ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value); ret = SCCB_Write(slv_addr, reg, value);//maybe not? } if (ret < 0) { ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret); } #endif return ret; } static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask) { return (read_reg(slv_addr, reg) & mask) == mask; } static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value) { int ret = 0; uint8_t c_value, new_value; ret = read_reg(slv_addr, reg); if (ret < 0) { return ret; } c_value = ret; new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset); ret = write_reg(slv_addr, reg, new_value); return ret; } static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2]) { int i = 0, ret = 0; while (!ret && regs[i][0] != REGLIST_TAIL) { if (regs[i][0] == REG_DLY) { vTaskDelay(regs[i][1] / portTICK_PERIOD_MS); } else { ret = write_reg(slv_addr, regs[i][0], regs[i][1]); } i++; } return ret; } static void print_regs(uint8_t slv_addr) { #ifdef DEBUG_PRINT_REG vTaskDelay(pdMS_TO_TICKS(100)); ESP_LOGI(TAG, "REG list look ======================"); for (size_t i = 0xf0; i <= 0xfe; i++) { ESP_LOGI(TAG, "reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i)); } ESP_LOGI(TAG, "\npage 0 ==="); write_reg(slv_addr, 0xfe, 0x00); // page 0 for (size_t i = 0x03; i <= 0x24; i++) { ESP_LOGI(TAG, "p0 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i)); } for (size_t i = 0x80; i <= 0xa2; i++) { ESP_LOGI(TAG, "p0 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i)); } ESP_LOGI(TAG, "\npage 3 ==="); write_reg(slv_addr, 0xfe, 0x03); // page 3 for (size_t i = 0x01; i <= 0x43; i++) { ESP_LOGI(TAG, "p3 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i)); } #endif } static int reset(sensor_t *sensor) { int ret = 0; // Software Reset: clear all registers and reset them to their default values ret = write_reg(sensor->slv_addr, RESET_RELATED, 0xe0); if (ret) { ESP_LOGE(TAG, "Software Reset FAILED!"); return ret; } vTaskDelay(100 / portTICK_PERIOD_MS); ret = write_regs(sensor->slv_addr, gc2145_default_init_regs); if (ret == 0) { ESP_LOGD(TAG, "Camera defaults loaded"); vTaskDelay(100 / portTICK_PERIOD_MS); #ifdef CONFIG_IDF_TARGET_ESP32 write_reg(sensor->slv_addr, 0xfe, 0x00); //ensure pclk <= 15MHz for esp32 set_reg_bits(sensor->slv_addr, 0xf8, 0, 0x3f, 2); // divx4 set_reg_bits(sensor->slv_addr, 0xfa, 4, 0x0f, 2); // divide_by #endif } return ret; } static int set_pixformat(sensor_t *sensor, pixformat_t pixformat) { int ret = 0; switch (pixformat) { case PIXFORMAT_RGB565: write_reg(sensor->slv_addr, 0xfe, 0x00); ret = set_reg_bits(sensor->slv_addr, P0_OUTPUT_FORMAT, 0, 0x1f, 6); //RGB565 break; case PIXFORMAT_YUV422: write_reg(sensor->slv_addr, 0xfe, 0x00); ret = set_reg_bits(sensor->slv_addr, P0_OUTPUT_FORMAT, 0, 0x1f, 2); //yuv422 break; default: ESP_LOGW(TAG, "unsupport format"); ret = -1; break; } if (ret == 0) { sensor->pixformat = pixformat; ESP_LOGD(TAG, "Set pixformat to: %u", pixformat); } return ret; } static int set_framesize(sensor_t *sensor, framesize_t framesize) { int ret = 0; if (framesize > FRAMESIZE_UXGA) { ESP_LOGW(TAG, "Invalid framesize: %u", framesize); framesize = FRAMESIZE_UXGA; } sensor->status.framesize = framesize; uint16_t w = resolution[framesize].width; uint16_t h = resolution[framesize].height; uint16_t row_s = (resolution[FRAMESIZE_UXGA].height - h) / 2; uint16_t col_s = (resolution[FRAMESIZE_UXGA].width - w) / 2; (void)row_s; (void)col_s; #if CONFIG_GC_SENSOR_SUBSAMPLE_MODE struct subsample_cfg { uint16_t ratio_numerator; uint16_t ratio_denominator; uint8_t reg0x99; uint8_t reg0x9b; uint8_t reg0x9c; uint8_t reg0x9d; uint8_t reg0x9e; uint8_t reg0x9f; uint8_t reg0xa0; uint8_t reg0xa1; uint8_t reg0xa2; }; const struct subsample_cfg subsample_cfgs[] = { // define some subsample ratio // {60, 420, 0x77, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, //1/7 // A smaller ratio brings a larger view, but it reduces the frame rate // {84, 420, 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, //1/5 // {105, 420, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},//1/4 {140, 420, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},//1/3 {210, 420, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},//1/2 {240, 420, 0x77, 0x02, 0x46, 0x02, 0x46, 0x02, 0x46, 0x02, 0x46},//4/7 {252, 420, 0x55, 0x02, 0x04, 0x02, 0x04, 0x02, 0x04, 0x02, 0x04},//3/5 {280, 420, 0x33, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00},//2/3 {420, 420, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},//1/1 }; uint16_t win_w = resolution[FRAMESIZE_UXGA].width; uint16_t win_h = resolution[FRAMESIZE_UXGA].height; const struct subsample_cfg *cfg = NULL; /** * Strategy: try to keep the maximum perspective */ uint8_t i = 0; if (framesize >= FRAMESIZE_QVGA) { i = 1; } for (; i < sizeof(subsample_cfgs) / sizeof(struct subsample_cfg); i++) { cfg = &subsample_cfgs[i]; if ((win_w * cfg->ratio_numerator / cfg->ratio_denominator >= w) && (win_h * cfg->ratio_numerator / cfg->ratio_denominator >= h)) { win_w = w * cfg->ratio_denominator / cfg->ratio_numerator; win_h = h * cfg->ratio_denominator / cfg->ratio_numerator; row_s = (resolution[FRAMESIZE_UXGA].height - win_h) / 2; col_s = (resolution[FRAMESIZE_UXGA].width - win_w) / 2; ESP_LOGI(TAG, "subsample win:%dx%d, ratio:%f", win_w, win_h, (float)cfg->ratio_numerator / (float)cfg->ratio_denominator); break; } } write_reg(sensor->slv_addr, 0xfe, 0x00); write_reg(sensor->slv_addr, P0_CROP_ENABLE, 0x01); write_reg(sensor->slv_addr, 0x09, H8(row_s)); write_reg(sensor->slv_addr, 0x0a, L8(row_s)); write_reg(sensor->slv_addr, 0x0b, H8(col_s)); write_reg(sensor->slv_addr, 0x0c, L8(col_s)); write_reg(sensor->slv_addr, 0x0d, H8(win_h + 8)); write_reg(sensor->slv_addr, 0x0e, L8(win_h + 8)); write_reg(sensor->slv_addr, 0x0f, H8(win_w + 16)); write_reg(sensor->slv_addr, 0x10, L8(win_w + 16)); write_reg(sensor->slv_addr, 0x99, cfg->reg0x99); write_reg(sensor->slv_addr, 0x9b, cfg->reg0x9b); write_reg(sensor->slv_addr, 0x9c, cfg->reg0x9c); write_reg(sensor->slv_addr, 0x9d, cfg->reg0x9d); write_reg(sensor->slv_addr, 0x9e, cfg->reg0x9e); write_reg(sensor->slv_addr, 0x9f, cfg->reg0x9f); write_reg(sensor->slv_addr, 0xa0, cfg->reg0xa0); write_reg(sensor->slv_addr, 0xa1, cfg->reg0xa1); write_reg(sensor->slv_addr, 0xa2, cfg->reg0xa2); write_reg(sensor->slv_addr, 0x95, H8(h)); write_reg(sensor->slv_addr, 0x96, L8(h)); write_reg(sensor->slv_addr, 0x97, H8(w)); write_reg(sensor->slv_addr, 0x98, L8(w)); #elif CONFIG_GC_SENSOR_WINDOWING_MODE write_reg(sensor->slv_addr, 0xfe, 0x00); write_reg(sensor->slv_addr, P0_CROP_ENABLE, 0x01); // write_reg(sensor->slv_addr, 0xec, col_s / 8); //measure window // write_reg(sensor->slv_addr, 0xed, row_s / 8); // write_reg(sensor->slv_addr, 0xee, (col_s + h) / 8); // write_reg(sensor->slv_addr, 0xef, (row_s + w) / 8); write_reg(sensor->slv_addr, 0x09, H8(row_s)); write_reg(sensor->slv_addr, 0x0a, L8(row_s)); write_reg(sensor->slv_addr, 0x0b, H8(col_s)); write_reg(sensor->slv_addr, 0x0c, L8(col_s)); write_reg(sensor->slv_addr, 0x0d, H8(h + 8)); write_reg(sensor->slv_addr, 0x0e, L8(h + 8)); write_reg(sensor->slv_addr, 0x0f, H8(w + 8)); write_reg(sensor->slv_addr, 0x10, L8(w + 8)); write_reg(sensor->slv_addr, 0x95, H8(h)); write_reg(sensor->slv_addr, 0x96, L8(h)); write_reg(sensor->slv_addr, 0x97, H8(w)); write_reg(sensor->slv_addr, 0x98, L8(w)); #endif if (ret == 0) { ESP_LOGD(TAG, "Set framesize to: %ux%u", w, h); } return ret; } static int set_hmirror(sensor_t *sensor, int enable) { int ret = 0; sensor->status.hmirror = enable; ret = write_reg(sensor->slv_addr, 0xfe, 0x00); ret |= set_reg_bits(sensor->slv_addr, P0_ANALOG_MODE1, 0, 0x01, enable != 0); if (ret == 0) { ESP_LOGD(TAG, "Set h-mirror to: %d", enable); } return ret; } static int set_vflip(sensor_t *sensor, int enable) { int ret = 0; sensor->status.vflip = enable; ret = write_reg(sensor->slv_addr, 0xfe, 0x00); ret |= set_reg_bits(sensor->slv_addr, P0_ANALOG_MODE1, 1, 0x01, enable != 0); if (ret == 0) { ESP_LOGD(TAG, "Set v-flip to: %d", enable); } return ret; } static int set_colorbar(sensor_t *sensor, int enable) { int ret = 0; // ret = write_reg(sensor->slv_addr, 0xfe, 0x00); // ret |= set_reg_bits(sensor->slv_addr, P0_DEBUG_MODE3, 3, 0x01, enable); if (ret == 0) { sensor->status.colorbar = enable; ESP_LOGD(TAG, "Set colorbar to: %d", enable); } return ret; } static int get_reg(sensor_t *sensor, int reg, int mask) { int ret = 0; if (mask > 0xFF) { ESP_LOGE(TAG, "mask should not more than 0xff"); } else { ret = read_reg(sensor->slv_addr, reg); } if (ret > 0) { ret &= mask; } return ret; } static int set_reg(sensor_t *sensor, int reg, int mask, int value) { int ret = 0; if (mask > 0xFF) { ESP_LOGE(TAG, "mask should not more than 0xff"); } else { ret = read_reg(sensor->slv_addr, reg); } if (ret < 0) { return ret; } value = (ret & ~mask) | (value & mask); if (mask > 0xFF) { } else { ret = write_reg(sensor->slv_addr, reg, value); } return ret; } static int init_status(sensor_t *sensor) { write_reg(sensor->slv_addr, 0xfe, 0x00); sensor->status.brightness = 0; sensor->status.contrast = 0; sensor->status.saturation = 0; sensor->status.sharpness = 0; sensor->status.denoise = 0; sensor->status.ae_level = 0; sensor->status.gainceiling = 0; sensor->status.awb = 0; sensor->status.dcw = 0; sensor->status.agc = 0; sensor->status.aec = 0; sensor->status.hmirror = check_reg_mask(sensor->slv_addr, P0_ANALOG_MODE1, 0x01); sensor->status.vflip = check_reg_mask(sensor->slv_addr, P0_ANALOG_MODE1, 0x02); sensor->status.colorbar = 0; sensor->status.bpc = 0; sensor->status.wpc = 0; sensor->status.raw_gma = 0; sensor->status.lenc = 0; sensor->status.quality = 0; sensor->status.special_effect = 0; sensor->status.wb_mode = 0; sensor->status.awb_gain = 0; sensor->status.agc_gain = 0; sensor->status.aec_value = 0; sensor->status.aec2 = 0; print_regs(sensor->slv_addr); return 0; } static int set_dummy(sensor_t *sensor, int val) { ESP_LOGW(TAG, "Unsupported"); return -1; } static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val) { ESP_LOGW(TAG, "Unsupported"); return -1; } int gc2145_detect(int slv_addr, sensor_id_t *id) { if (GC2145_SCCB_ADDR == slv_addr) { uint8_t MIDL = SCCB_Read(slv_addr, CHIP_ID_LOW); uint8_t MIDH = SCCB_Read(slv_addr, CHIP_ID_HIGH); uint16_t PID = MIDH << 8 | MIDL; if (GC2145_PID == PID) { id->PID = PID; return PID; } else { ESP_LOGI(TAG, "Mismatch PID=0x%x", PID); } } return 0; } int gc2145_init(sensor_t *sensor) { sensor->init_status = init_status; sensor->reset = reset; sensor->set_pixformat = set_pixformat; sensor->set_framesize = set_framesize; sensor->set_contrast = set_dummy; sensor->set_brightness = set_dummy; sensor->set_saturation = set_dummy; sensor->set_sharpness = set_dummy; sensor->set_denoise = set_dummy; sensor->set_gainceiling = set_gainceiling_dummy; sensor->set_quality = set_dummy; sensor->set_colorbar = set_colorbar; sensor->set_whitebal = set_dummy; sensor->set_gain_ctrl = set_dummy; sensor->set_exposure_ctrl = set_dummy; sensor->set_hmirror = set_hmirror; sensor->set_vflip = set_vflip; sensor->set_aec2 = set_dummy; sensor->set_awb_gain = set_dummy; sensor->set_agc_gain = set_dummy; sensor->set_aec_value = set_dummy; sensor->set_special_effect = set_dummy; sensor->set_wb_mode = set_dummy; sensor->set_ae_level = set_dummy; sensor->set_dcw = set_dummy; sensor->set_bpc = set_dummy; sensor->set_wpc = set_dummy; sensor->set_raw_gma = set_dummy; sensor->set_lenc = set_dummy; sensor->get_reg = get_reg; sensor->set_reg = set_reg; sensor->set_res_raw = NULL; sensor->set_pll = NULL; sensor->set_xclk = NULL; ESP_LOGD(TAG, "GC2145 Attached"); return 0; }