/** * Copyright (c) 2016 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_QSPI_H__ #define NRF_QSPI_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_qspi_hal QSPI HAL * @{ * @ingroup nrf_qspi * @brief Hardware access layer for managing the QSPI peripheral. */ /** * @brief This value can be used as a parameter for the @ref nrf_qspi_pins_set * function to specify that a given QSPI signal (SCK, CSN, IO0, IO1, IO2, or IO3) * will not be connected to a physical pin. */ #define NRF_QSPI_PIN_NOT_CONNECTED 0xFF /** @brief Macro for setting proper values to pin registers. */ #define NRF_QSPI_PIN_VAL(pin) (pin) == NRF_QSPI_PIN_NOT_CONNECTED ? 0xFFFFFFFF : (pin) /** @brief QSPI tasks. */ typedef enum { NRF_QSPI_TASK_ACTIVATE = offsetof(NRF_QSPI_Type, TASKS_ACTIVATE), /**< Activate the QSPI interface. */ NRF_QSPI_TASK_READSTART = offsetof(NRF_QSPI_Type, TASKS_READSTART), /**< Start transfer from external flash memory to internal RAM. */ NRF_QSPI_TASK_WRITESTART = offsetof(NRF_QSPI_Type, TASKS_WRITESTART), /**< Start transfer from internal RAM to external flash memory. */ NRF_QSPI_TASK_ERASESTART = offsetof(NRF_QSPI_Type, TASKS_ERASESTART), /**< Start external flash memory erase operation. */ NRF_QSPI_TASK_DEACTIVATE = offsetof(NRF_QSPI_Type, TASKS_DEACTIVATE), /**< Deactivate the QSPI interface. */ } nrf_qspi_task_t; /** @brief QSPI events. */ typedef enum { NRF_QSPI_EVENT_READY = offsetof(NRF_QSPI_Type, EVENTS_READY) /**< QSPI peripheral is ready after it executes any task. */ } nrf_qspi_event_t; /** @brief QSPI interrupts. */ typedef enum { NRF_QSPI_INT_READY_MASK = QSPI_INTENSET_READY_Msk /**< Interrupt on READY event. */ } nrf_qspi_int_mask_t; /** @brief QSPI frequency divider values. */ typedef enum { NRF_QSPI_FREQ_32MDIV1, /**< 32.0 MHz. */ NRF_QSPI_FREQ_32MDIV2, /**< 16.0 MHz. */ NRF_QSPI_FREQ_32MDIV3, /**< 10.6 MHz. */ NRF_QSPI_FREQ_32MDIV4, /**< 8.00 MHz. */ NRF_QSPI_FREQ_32MDIV5, /**< 6.40 MHz. */ NRF_QSPI_FREQ_32MDIV6, /**< 5.33 MHz. */ NRF_QSPI_FREQ_32MDIV7, /**< 4.57 MHz. */ NRF_QSPI_FREQ_32MDIV8, /**< 4.00 MHz. */ NRF_QSPI_FREQ_32MDIV9, /**< 3.55 MHz. */ NRF_QSPI_FREQ_32MDIV10, /**< 3.20 MHz. */ NRF_QSPI_FREQ_32MDIV11, /**< 2.90 MHz. */ NRF_QSPI_FREQ_32MDIV12, /**< 2.66 MHz. */ NRF_QSPI_FREQ_32MDIV13, /**< 2.46 MHz. */ NRF_QSPI_FREQ_32MDIV14, /**< 2.29 MHz. */ NRF_QSPI_FREQ_32MDIV15, /**< 2.13 MHz. */ NRF_QSPI_FREQ_32MDIV16, /**< 2.00 MHz. */ } nrf_qspi_frequency_t; /** @brief Interface configuration for a read operation. */ typedef enum { NRF_QSPI_READOC_FASTREAD = QSPI_IFCONFIG0_READOC_FASTREAD, /**< Single data line SPI. FAST_READ (opcode 0x0B). */ NRF_QSPI_READOC_READ2O = QSPI_IFCONFIG0_READOC_READ2O, /**< Dual data line SPI. READ2O (opcode 0x3B). */ NRF_QSPI_READOC_READ2IO = QSPI_IFCONFIG0_READOC_READ2IO, /**< Dual data line SPI. READ2IO (opcode 0xBB). */ NRF_QSPI_READOC_READ4O = QSPI_IFCONFIG0_READOC_READ4O, /**< Quad data line SPI. READ4O (opcode 0x6B). */ NRF_QSPI_READOC_READ4IO = QSPI_IFCONFIG0_READOC_READ4IO /**< Quad data line SPI. READ4IO (opcode 0xEB). */ } nrf_qspi_readoc_t; /** @brief Interface configuration for a write operation. */ typedef enum { NRF_QSPI_WRITEOC_PP = QSPI_IFCONFIG0_WRITEOC_PP, /**< Single data line SPI. PP (opcode 0x02). */ NRF_QSPI_WRITEOC_PP2O = QSPI_IFCONFIG0_WRITEOC_PP2O, /**< Dual data line SPI. PP2O (opcode 0xA2). */ NRF_QSPI_WRITEOC_PP4O = QSPI_IFCONFIG0_WRITEOC_PP4O, /**< Quad data line SPI. PP4O (opcode 0x32). */ NRF_QSPI_WRITEOC_PP4IO = QSPI_IFCONFIG0_WRITEOC_PP4IO, /**< Quad data line SPI. READ4O (opcode 0x38). */ } nrf_qspi_writeoc_t; /** @brief Interface configuration for addressing mode. */ typedef enum { NRF_QSPI_ADDRMODE_24BIT = QSPI_IFCONFIG0_ADDRMODE_24BIT, /**< 24-bit addressing. */ NRF_QSPI_ADDRMODE_32BIT = QSPI_IFCONFIG0_ADDRMODE_32BIT /**< 32-bit addressing. */ } nrf_qspi_addrmode_t; /** @brief QSPI SPI mode. Polarization and phase configuration. */ typedef enum { NRF_QSPI_MODE_0 = QSPI_IFCONFIG1_SPIMODE_MODE0, /**< Mode 0 (CPOL=0, CPHA=0). */ NRF_QSPI_MODE_1 = QSPI_IFCONFIG1_SPIMODE_MODE3 /**< Mode 1 (CPOL=1, CPHA=1). */ } nrf_qspi_spi_mode_t; /** @brief Addressing configuration mode. */ typedef enum { NRF_QSPI_ADDRCONF_MODE_NOINSTR = QSPI_ADDRCONF_MODE_NoInstr, /**< Do not send any instruction. */ NRF_QSPI_ADDRCONF_MODE_OPCODE = QSPI_ADDRCONF_MODE_Opcode, /**< Send opcode. */ NRF_QSPI_ADDRCONF_MODE_OPBYTE0 = QSPI_ADDRCONF_MODE_OpByte0, /**< Send opcode, byte0. */ NRF_QSPI_ADDRCONF_MODE_ALL = QSPI_ADDRCONF_MODE_All /**< Send opcode, byte0, byte1. */ } nrf_qspi_addrconfig_mode_t; /** @brief Erasing data length. */ typedef enum { NRF_QSPI_ERASE_LEN_4KB = QSPI_ERASE_LEN_LEN_4KB, /**< Erase 4 kB block (flash command 0x20). */ NRF_QSPI_ERASE_LEN_64KB = QSPI_ERASE_LEN_LEN_64KB, /**< Erase 64 kB block (flash command 0xD8). */ NRF_QSPI_ERASE_LEN_ALL = QSPI_ERASE_LEN_LEN_All /**< Erase all (flash command 0xC7). */ } nrf_qspi_erase_len_t; /** @brief Custom instruction length. */ typedef enum { NRF_QSPI_CINSTR_LEN_1B = QSPI_CINSTRCONF_LENGTH_1B, /**< Send opcode only. */ NRF_QSPI_CINSTR_LEN_2B = QSPI_CINSTRCONF_LENGTH_2B, /**< Send opcode, CINSTRDAT0.BYTE0. */ NRF_QSPI_CINSTR_LEN_3B = QSPI_CINSTRCONF_LENGTH_3B, /**< Send opcode, CINSTRDAT0.BYTE0 -> CINSTRDAT0.BYTE1. */ NRF_QSPI_CINSTR_LEN_4B = QSPI_CINSTRCONF_LENGTH_4B, /**< Send opcode, CINSTRDAT0.BYTE0 -> CINSTRDAT0.BYTE2. */ NRF_QSPI_CINSTR_LEN_5B = QSPI_CINSTRCONF_LENGTH_5B, /**< Send opcode, CINSTRDAT0.BYTE0 -> CINSTRDAT0.BYTE3. */ NRF_QSPI_CINSTR_LEN_6B = QSPI_CINSTRCONF_LENGTH_6B, /**< Send opcode, CINSTRDAT0.BYTE0 -> CINSTRDAT1.BYTE4. */ NRF_QSPI_CINSTR_LEN_7B = QSPI_CINSTRCONF_LENGTH_7B, /**< Send opcode, CINSTRDAT0.BYTE0 -> CINSTRDAT1.BYTE5. */ NRF_QSPI_CINSTR_LEN_8B = QSPI_CINSTRCONF_LENGTH_8B, /**< Send opcode, CINSTRDAT0.BYTE0 -> CINSTRDAT1.BYTE6. */ NRF_QSPI_CINSTR_LEN_9B = QSPI_CINSTRCONF_LENGTH_9B /**< Send opcode, CINSTRDAT0.BYTE0 -> CINSTRDAT1.BYTE7. */ } nrf_qspi_cinstr_len_t; /** @brief Pin configuration. */ typedef struct { uint8_t sck_pin; /**< SCK pin number. */ uint8_t csn_pin; /**< Chip select pin number. */ uint8_t io0_pin; /**< IO0/MOSI pin number. */ uint8_t io1_pin; /**< IO1/MISO pin number. */ uint8_t io2_pin; /**< IO2 pin number (optional). * Set to @ref NRF_QSPI_PIN_NOT_CONNECTED if this signal is not needed. */ uint8_t io3_pin; /**< IO3 pin number (optional). * Set to @ref NRF_QSPI_PIN_NOT_CONNECTED if this signal is not needed. */ } nrf_qspi_pins_t; /** @brief Custom instruction configuration. */ typedef struct { uint8_t opcode; /**< Opcode used in custom instruction transmission. */ nrf_qspi_cinstr_len_t length; /**< Length of the custom instruction data. */ bool io2_level; /**< I/O line level during transmission. */ bool io3_level; /**< I/O line level during transmission. */ bool wipwait; /**< Wait if a Wait in Progress bit is set in the memory status byte. */ bool wren; /**< Send write enable before instruction. */ } nrf_qspi_cinstr_conf_t; /** @brief Addressing mode register configuration. See @ref nrf_qspi_addrconfig_set */ typedef struct { uint8_t opcode; /**< Opcode used to enter the proper addressing mode. */ uint8_t byte0; /**< Byte following the opcode. */ uint8_t byte1; /**< Byte following byte0. */ nrf_qspi_addrconfig_mode_t mode; /**< Extended addresing mode. */ bool wipwait; /**< Enable or disable waiting for complete operation execution. */ bool wren; /**< Send write enable before instruction. */ } nrf_qspi_addrconfig_conf_t; /** @brief Structure with QSPI protocol interface configuration. */ typedef struct { nrf_qspi_readoc_t readoc; /**< Read operation code. */ nrf_qspi_writeoc_t writeoc; /**< Write operation code. */ nrf_qspi_addrmode_t addrmode; /**< Addresing mode (24-bit or 32-bit). */ bool dpmconfig; /**< Enable the Deep Power-down Mode (DPM) feature. */ } nrf_qspi_prot_conf_t; /** @brief QSPI physical interface configuration. */ typedef struct { uint8_t sck_delay; /**< tSHSL, tWHSL, and tSHWL in number of 16 MHz periods (62.5ns). */ bool dpmen; /**< Enable the DPM feature. */ nrf_qspi_spi_mode_t spi_mode; /**< SPI phase and polarization. */ nrf_qspi_frequency_t sck_freq; /**< SCK frequency given as enum @ref nrf_qspi_frequency_t. */ } nrf_qspi_phy_conf_t; /** * @brief Function for activating the specified QSPI task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task to be activated. */ __STATIC_INLINE void nrf_qspi_task_trigger(NRF_QSPI_Type * p_reg, nrf_qspi_task_t task); /** * @brief Function for getting the address of the specified QSPI task register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task QSPI task. * * @return Address of the specified task register. */ __STATIC_INLINE uint32_t nrf_qspi_task_address_get(NRF_QSPI_Type const * p_reg, nrf_qspi_task_t task); /** * @brief Function for clearing the specified QSPI event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be cleared. */ __STATIC_INLINE void nrf_qspi_event_clear(NRF_QSPI_Type * p_reg, nrf_qspi_event_t event); /** * @brief Function for retrieving the state of the QSPI event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ __STATIC_INLINE bool nrf_qspi_event_check(NRF_QSPI_Type const * p_reg, nrf_qspi_event_t event); /** * @brief Function for getting the address of the specified QSPI event register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event The specified event. * * @return Address of the specified event register. */ __STATIC_INLINE uint32_t * nrf_qspi_event_address_get(NRF_QSPI_Type const * p_reg, nrf_qspi_event_t event); /** * @brief Function for enabling specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be enabled. */ __STATIC_INLINE void nrf_qspi_int_enable(NRF_QSPI_Type * p_reg, uint32_t mask); /** * @brief Function for disabling specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be disabled. */ __STATIC_INLINE void nrf_qspi_int_disable(NRF_QSPI_Type * p_reg, uint32_t mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] qspi_int Interrupt to be checked. * * @retval true The interrupt is enabled. * @retval false The interrupt is not enabled. */ __STATIC_INLINE bool nrf_qspi_int_enable_check(NRF_QSPI_Type const * p_reg, nrf_qspi_int_mask_t qspi_int); /** * @brief Function for enabling the QSPI peripheral. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ __STATIC_INLINE void nrf_qspi_enable(NRF_QSPI_Type * p_reg); /** * @brief Function for disabling the QSPI peripheral. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ __STATIC_INLINE void nrf_qspi_disable(NRF_QSPI_Type * p_reg); /** * @brief Function for configuring QSPI pins. * * If a given signal is not needed, pass the @ref NRF_QSPI_PIN_NOT_CONNECTED * value instead of its pin number. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_pins Pointer to the pins configuration structure. See @ref nrf_qspi_pins_t. */ __STATIC_INLINE void nrf_qspi_pins_set(NRF_QSPI_Type * p_reg, const nrf_qspi_pins_t * p_pins); /** * @brief Function for setting the QSPI XIPOFFSET register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] xip_offset Address offset in the external memory for Execute in Place operation. */ __STATIC_INLINE void nrf_qspi_xip_offset_set(NRF_QSPI_Type * p_reg, uint32_t xip_offset); /** * @brief Function for setting the QSPI IFCONFIG0 register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_config Pointer to the QSPI protocol interface configuration structure. * See @ref nrf_qspi_prot_conf_t. */ __STATIC_INLINE void nrf_qspi_ifconfig0_set(NRF_QSPI_Type * p_reg, const nrf_qspi_prot_conf_t * p_config); /** * @brief Function for setting the QSPI IFCONFIG1 register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_config Pointer to the QSPI physical interface configuration structure. * See @ref nrf_qspi_phy_conf_t. */ __STATIC_INLINE void nrf_qspi_ifconfig1_set(NRF_QSPI_Type * p_reg, const nrf_qspi_phy_conf_t * p_config); /** * @brief Function for setting the QSPI ADDRCONF register. * * This function must be executed before sending task NRF_QSPI_TASK_ACTIVATE. Data stored in the structure * is sent during the start of the peripheral. Remember that the reset instruction can set * addressing mode to default in the memory device. If memory reset is necessary before configuring * the addressing mode, use custom instruction feature instead of this function. * Case with reset: Enable the peripheral without setting ADDRCONF register, send reset instructions * using a custom instruction feature (reset enable and then reset), set proper addressing mode * using the custom instruction feature. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_config Pointer to the addressing mode configuration structure. * See @ref nrf_qspi_addrconfig_conf_t. */ __STATIC_INLINE void nrf_qspi_addrconfig_set(NRF_QSPI_Type * p_reg, const nrf_qspi_addrconfig_conf_t * p_config); /** * @brief Function for setting write data into the peripheral register (without starting the process). * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_buffer Pointer to the writing buffer. * @param[in] length Lenght of the writing data. * @param[in] dest_addr Address in memory to write to. */ __STATIC_INLINE void nrf_qspi_write_buffer_set(NRF_QSPI_Type * p_reg, void const * p_buffer, uint32_t length, uint32_t dest_addr); /** * @brief Function for setting read data into the peripheral register (without starting the process). * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[out] p_buffer Pointer to the reading buffer. * @param[in] length Length of the read data. * @param[in] src_addr Address in memory to read from. */ __STATIC_INLINE void nrf_qspi_read_buffer_set(NRF_QSPI_Type * p_reg, void * p_buffer, uint32_t length, uint32_t src_addr); /** * @brief Function for setting erase data into the peripheral register (without starting the process). * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] erase_addr Start address to erase. Address must have padding set to 4 bytes. * @param[in] len Size of erasing area. */ __STATIC_INLINE void nrf_qspi_erase_ptr_set(NRF_QSPI_Type * p_reg, uint32_t erase_addr, nrf_qspi_erase_len_t len); /** * @brief Function for getting the peripheral status register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Peripheral status register. */ __STATIC_INLINE uint32_t nrf_qspi_status_reg_get(NRF_QSPI_Type const * p_reg); /** * @brief Function for getting the device status register stored in the peripheral status register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Device status register (lower byte). */ __STATIC_INLINE uint8_t nrf_qspi_sreg_get(NRF_QSPI_Type const * p_reg); /** * @brief Function for checking if the peripheral is busy or not. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @retval true The QSPI is busy. * @retval false The QSPI is ready. */ __STATIC_INLINE bool nrf_qspi_busy_check(NRF_QSPI_Type const * p_reg); /** * @brief Function for setting registers sending with custom instruction transmission. * * This function can be ommited when using NRF_QSPI_CINSTR_LEN_1B as the length argument * (sending only opcode without data). * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] length Length of the custom instruction data. * @param[in] p_tx_data Pointer to the data to send with the custom instruction. */ __STATIC_INLINE void nrf_qspi_cinstrdata_set(NRF_QSPI_Type * p_reg, nrf_qspi_cinstr_len_t length, void const * p_tx_data); /** * @brief Function for getting data from register after custom instruction transmission. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] length Length of the custom instruction data. * @param[in] p_rx_data Pointer to the reading buffer. */ __STATIC_INLINE void nrf_qspi_cinstrdata_get(NRF_QSPI_Type const * p_reg, nrf_qspi_cinstr_len_t length, void * p_rx_data); /** * @brief Function for sending custom instruction to external memory. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_config Pointer to the custom instruction configuration structure. * See @ref nrf_qspi_cinstr_conf_t. */ __STATIC_INLINE void nrf_qspi_cinstr_transfer_start(NRF_QSPI_Type * p_reg, const nrf_qspi_cinstr_conf_t * p_config); /** * @brief Function for starting a custom instruction long transfer. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_config Pointer to the custom instruction configuration structure. * See @ref nrf_qspi_cinstr_conf_t. */ __STATIC_INLINE void nrf_qspi_cinstr_long_transfer_start(NRF_QSPI_Type * p_reg, const nrf_qspi_cinstr_conf_t * p_config); /** * @brief Function for checking whether a custom instruction long transfer is ongoing. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @retval true Custom instruction long transfer is ongoing. * @retval false Custom instruction long transfer is not ongoing. */ __STATIC_INLINE bool nrf_qspi_cinstr_long_transfer_is_ongoing(NRF_QSPI_Type const * p_reg); /** * @brief Function for continuing a custom instruction long transfer. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] length Length of the custom instruction data. * @param[in] finalize True if the custom instruction long transfer is to be finalized. * False if the custom instruction long transfer is to be continued. */ __STATIC_INLINE void nrf_qspi_cinstr_long_transfer_continue(NRF_QSPI_Type * p_reg, nrf_qspi_cinstr_len_t length, bool finalize); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_qspi_task_trigger(NRF_QSPI_Type * p_reg, nrf_qspi_task_t task) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE uint32_t nrf_qspi_task_address_get(NRF_QSPI_Type const * p_reg, nrf_qspi_task_t task) { return ((uint32_t)p_reg + (uint32_t)task); } __STATIC_INLINE void nrf_qspi_event_clear(NRF_QSPI_Type * p_reg, nrf_qspi_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL; } __STATIC_INLINE bool nrf_qspi_event_check(NRF_QSPI_Type const * p_reg, nrf_qspi_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE uint32_t * nrf_qspi_event_address_get(NRF_QSPI_Type const * p_reg, nrf_qspi_event_t event) { return (uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE void nrf_qspi_int_enable(NRF_QSPI_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } __STATIC_INLINE void nrf_qspi_int_disable(NRF_QSPI_Type * p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } __STATIC_INLINE bool nrf_qspi_int_enable_check(NRF_QSPI_Type const * p_reg, nrf_qspi_int_mask_t qspi_int) { return (bool)(p_reg->INTENSET & qspi_int); } __STATIC_INLINE void nrf_qspi_enable(NRF_QSPI_Type * p_reg) { p_reg->ENABLE = (QSPI_ENABLE_ENABLE_Enabled << QSPI_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_qspi_disable(NRF_QSPI_Type * p_reg) { // Workaround for nRF52840 anomaly 122: Current consumption is too high. *(volatile uint32_t *)0x40029054ul = 1ul; p_reg->ENABLE = (QSPI_ENABLE_ENABLE_Disabled << QSPI_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_qspi_pins_set(NRF_QSPI_Type * p_reg, const nrf_qspi_pins_t * p_pins) { p_reg->PSEL.SCK = NRF_QSPI_PIN_VAL(p_pins->sck_pin); p_reg->PSEL.CSN = NRF_QSPI_PIN_VAL(p_pins->csn_pin); p_reg->PSEL.IO0 = NRF_QSPI_PIN_VAL(p_pins->io0_pin); p_reg->PSEL.IO1 = NRF_QSPI_PIN_VAL(p_pins->io1_pin); p_reg->PSEL.IO2 = NRF_QSPI_PIN_VAL(p_pins->io2_pin); p_reg->PSEL.IO3 = NRF_QSPI_PIN_VAL(p_pins->io3_pin); } __STATIC_INLINE void nrf_qspi_xip_offset_set(NRF_QSPI_Type * p_reg, uint32_t xip_offset) { p_reg->XIPOFFSET = xip_offset; } __STATIC_INLINE void nrf_qspi_ifconfig0_set(NRF_QSPI_Type * p_reg, const nrf_qspi_prot_conf_t * p_config) { uint32_t config = p_config->readoc; config |= ((uint32_t)p_config->writeoc) << QSPI_IFCONFIG0_WRITEOC_Pos; config |= ((uint32_t)p_config->addrmode) << QSPI_IFCONFIG0_ADDRMODE_Pos; config |= (p_config->dpmconfig ? 1U : 0U ) << QSPI_IFCONFIG0_DPMENABLE_Pos; p_reg->IFCONFIG0 = config; } __STATIC_INLINE void nrf_qspi_ifconfig1_set(NRF_QSPI_Type * p_reg, const nrf_qspi_phy_conf_t * p_config) { // IFCONFIG1 mask for reserved fields in the register. uint32_t config = p_reg->IFCONFIG1 & 0x00FFFF00; config |= p_config->sck_delay; config |= (p_config->dpmen ? 1U : 0U) << QSPI_IFCONFIG1_DPMEN_Pos; config |= ((uint32_t)(p_config->spi_mode)) << QSPI_IFCONFIG1_SPIMODE_Pos; config |= ((uint32_t)(p_config->sck_freq)) << QSPI_IFCONFIG1_SCKFREQ_Pos; p_reg->IFCONFIG1 = config; } __STATIC_INLINE void nrf_qspi_addrconfig_set(NRF_QSPI_Type * p_reg, const nrf_qspi_addrconfig_conf_t * p_config) { uint32_t config = p_config->opcode; config |= ((uint32_t)p_config->byte0) << QSPI_ADDRCONF_BYTE0_Pos; config |= ((uint32_t)p_config->byte1) << QSPI_ADDRCONF_BYTE1_Pos; config |= ((uint32_t)(p_config->mode)) << QSPI_ADDRCONF_MODE_Pos; config |= (p_config->wipwait ? 1U : 0U) << QSPI_ADDRCONF_WIPWAIT_Pos; config |= (p_config->wren ? 1U : 0U) << QSPI_ADDRCONF_WREN_Pos; p_reg->ADDRCONF = config; } __STATIC_INLINE void nrf_qspi_write_buffer_set(NRF_QSPI_Type * p_reg, void const * p_buffer, uint32_t length, uint32_t dest_addr) { p_reg->WRITE.DST = dest_addr; p_reg->WRITE.SRC = (uint32_t) p_buffer; p_reg->WRITE.CNT = length; } __STATIC_INLINE void nrf_qspi_read_buffer_set(NRF_QSPI_Type * p_reg, void * p_buffer, uint32_t length, uint32_t src_addr) { p_reg->READ.SRC = src_addr; p_reg->READ.DST = (uint32_t) p_buffer; p_reg->READ.CNT = length; } __STATIC_INLINE void nrf_qspi_erase_ptr_set(NRF_QSPI_Type * p_reg, uint32_t erase_addr, nrf_qspi_erase_len_t len) { p_reg->ERASE.PTR = erase_addr; p_reg->ERASE.LEN = len; } __STATIC_INLINE uint32_t nrf_qspi_status_reg_get(NRF_QSPI_Type const * p_reg) { return p_reg->STATUS; } __STATIC_INLINE uint8_t nrf_qspi_sreg_get(NRF_QSPI_Type const * p_reg) { return (uint8_t)(p_reg->STATUS & QSPI_STATUS_SREG_Msk) >> QSPI_STATUS_SREG_Pos; } __STATIC_INLINE bool nrf_qspi_busy_check(NRF_QSPI_Type const * p_reg) { return ((p_reg->STATUS & QSPI_STATUS_READY_Msk) >> QSPI_STATUS_READY_Pos) == QSPI_STATUS_READY_BUSY; } __STATIC_INLINE void nrf_qspi_cinstrdata_set(NRF_QSPI_Type * p_reg, nrf_qspi_cinstr_len_t length, void const * p_tx_data) { uint32_t reg = 0; uint8_t const *p_tx_data_8 = (uint8_t const *) p_tx_data; // Load custom instruction. switch (length) { case NRF_QSPI_CINSTR_LEN_9B: reg |= ((uint32_t)p_tx_data_8[7]) << QSPI_CINSTRDAT1_BYTE7_Pos; /* fall-through */ case NRF_QSPI_CINSTR_LEN_8B: reg |= ((uint32_t)p_tx_data_8[6]) << QSPI_CINSTRDAT1_BYTE6_Pos; /* fall-through */ case NRF_QSPI_CINSTR_LEN_7B: reg |= ((uint32_t)p_tx_data_8[5]) << QSPI_CINSTRDAT1_BYTE5_Pos; /* fall-through */ case NRF_QSPI_CINSTR_LEN_6B: reg |= ((uint32_t)p_tx_data_8[4]); p_reg->CINSTRDAT1 = reg; reg = 0; /* fall-through */ case NRF_QSPI_CINSTR_LEN_5B: reg |= ((uint32_t)p_tx_data_8[3]) << QSPI_CINSTRDAT0_BYTE3_Pos; /* fall-through */ case NRF_QSPI_CINSTR_LEN_4B: reg |= ((uint32_t)p_tx_data_8[2]) << QSPI_CINSTRDAT0_BYTE2_Pos; /* fall-through */ case NRF_QSPI_CINSTR_LEN_3B: reg |= ((uint32_t)p_tx_data_8[1]) << QSPI_CINSTRDAT0_BYTE1_Pos; /* fall-through */ case NRF_QSPI_CINSTR_LEN_2B: reg |= ((uint32_t)p_tx_data_8[0]); p_reg->CINSTRDAT0 = reg; /* fall-through */ case NRF_QSPI_CINSTR_LEN_1B: /* Send only opcode. Case to avoid compiler warnings. */ break; default: break; } } __STATIC_INLINE void nrf_qspi_cinstrdata_get(NRF_QSPI_Type const * p_reg, nrf_qspi_cinstr_len_t length, void * p_rx_data) { uint8_t *p_rx_data_8 = (uint8_t *) p_rx_data; uint32_t reg1 = p_reg->CINSTRDAT1; uint32_t reg0 = p_reg->CINSTRDAT0; switch (length) { case NRF_QSPI_CINSTR_LEN_9B: p_rx_data_8[7] = (uint8_t)(reg1 >> QSPI_CINSTRDAT1_BYTE7_Pos); /* fall-through */ case NRF_QSPI_CINSTR_LEN_8B: p_rx_data_8[6] = (uint8_t)(reg1 >> QSPI_CINSTRDAT1_BYTE6_Pos); /* fall-through */ case NRF_QSPI_CINSTR_LEN_7B: p_rx_data_8[5] = (uint8_t)(reg1 >> QSPI_CINSTRDAT1_BYTE5_Pos); /* fall-through */ case NRF_QSPI_CINSTR_LEN_6B: p_rx_data_8[4] = (uint8_t)(reg1); /* fall-through */ case NRF_QSPI_CINSTR_LEN_5B: p_rx_data_8[3] = (uint8_t)(reg0 >> QSPI_CINSTRDAT0_BYTE3_Pos); /* fall-through */ case NRF_QSPI_CINSTR_LEN_4B: p_rx_data_8[2] = (uint8_t)(reg0 >> QSPI_CINSTRDAT0_BYTE2_Pos); /* fall-through */ case NRF_QSPI_CINSTR_LEN_3B: p_rx_data_8[1] = (uint8_t)(reg0 >> QSPI_CINSTRDAT0_BYTE1_Pos); /* fall-through */ case NRF_QSPI_CINSTR_LEN_2B: p_rx_data_8[0] = (uint8_t)(reg0); /* fall-through */ case NRF_QSPI_CINSTR_LEN_1B: /* Send only opcode. Case to avoid compiler warnings. */ break; default: break; } } __STATIC_INLINE void nrf_qspi_cinstr_transfer_start(NRF_QSPI_Type * p_reg, const nrf_qspi_cinstr_conf_t * p_config) { p_reg->CINSTRCONF = (((uint32_t)p_config->opcode << QSPI_CINSTRCONF_OPCODE_Pos) | ((uint32_t)p_config->length << QSPI_CINSTRCONF_LENGTH_Pos) | ((uint32_t)p_config->io2_level << QSPI_CINSTRCONF_LIO2_Pos) | ((uint32_t)p_config->io3_level << QSPI_CINSTRCONF_LIO3_Pos) | ((uint32_t)p_config->wipwait << QSPI_CINSTRCONF_WIPWAIT_Pos) | ((uint32_t)p_config->wren << QSPI_CINSTRCONF_WREN_Pos)); } __STATIC_INLINE void nrf_qspi_cinstr_long_transfer_start(NRF_QSPI_Type * p_reg, const nrf_qspi_cinstr_conf_t * p_config) { p_reg->CINSTRCONF = (((uint32_t)p_config->opcode << QSPI_CINSTRCONF_OPCODE_Pos) | ((uint32_t)p_config->length << QSPI_CINSTRCONF_LENGTH_Pos) | ((uint32_t)p_config->io2_level << QSPI_CINSTRCONF_LIO2_Pos) | ((uint32_t)p_config->io3_level << QSPI_CINSTRCONF_LIO3_Pos) | ((uint32_t)p_config->wipwait << QSPI_CINSTRCONF_WIPWAIT_Pos) | ((uint32_t)p_config->wren << QSPI_CINSTRCONF_WREN_Pos) | (QSPI_CINSTRCONF_LFEN_Msk)); } __STATIC_INLINE bool nrf_qspi_cinstr_long_transfer_is_ongoing(NRF_QSPI_Type const * p_reg) { return (bool)((p_reg->CINSTRCONF & (QSPI_CINSTRCONF_LFEN_Msk | QSPI_CINSTRCONF_LFSTOP_Msk)) == QSPI_CINSTRCONF_LFEN_Msk); } __STATIC_INLINE void nrf_qspi_cinstr_long_transfer_continue(NRF_QSPI_Type * p_reg, nrf_qspi_cinstr_len_t length, bool finalize) { uint32_t mask = (((uint32_t)length << QSPI_CINSTRCONF_LENGTH_Pos) | (QSPI_CINSTRCONF_LFEN_Msk)); mask |= (finalize ? QSPI_CINSTRCONF_LFSTOP_Msk : 0); p_reg->CINSTRCONF = mask; } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif // NRF_QSPI_H__