/** * Copyright (c) 2018 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "nrfx_atomic.h" #ifndef NRFX_ATOMIC_USE_BUILT_IN #define NRFX_ATOMIC_USE_BUILT_IN 0 #endif // NRFX_ATOMIC_USE_BUILT_IN #if ((__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)) #define NRFX_ATOMIC_STREX_LDREX_PRESENT #endif #if (NRFX_ATOMIC_USE_BUILT_IN == 0) && defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) #include "nrfx_atomic_internal.h" #endif uint32_t nrfx_atomic_u32_fetch_store(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_exchange_n(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(mov, old_val, new_val, p_data, value); (void) new_val; return old_val; #else NRFX_CRITICAL_SECTION_ENTER(); uint32_t old_val = *p_data; *p_data = value; NRFX_CRITICAL_SECTION_EXIT(); return old_val; #endif // NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_store(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN __atomic_store_n(p_data, value, __ATOMIC_SEQ_CST); return value; #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(mov, old_val, new_val, p_data, value); (void) old_val; return new_val; #else NRFX_CRITICAL_SECTION_ENTER(); *p_data = value; NRFX_CRITICAL_SECTION_EXIT(); return value; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_fetch_or(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_fetch_or(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(orr, old_val, new_val, p_data, value); (void) new_val; return old_val; #else NRFX_CRITICAL_SECTION_ENTER(); uint32_t old_val = *p_data; *p_data |= value; NRFX_CRITICAL_SECTION_EXIT(); return old_val; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_or(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_or_fetch(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(orr, old_val, new_val, p_data, value); (void) old_val; return new_val; #else NRFX_CRITICAL_SECTION_ENTER(); *p_data |= value; uint32_t new_value = *p_data; NRFX_CRITICAL_SECTION_EXIT(); return new_value; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_fetch_and(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_fetch_and(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(and, old_val, new_val, p_data, value); (void) new_val; return old_val; #else NRFX_CRITICAL_SECTION_ENTER(); uint32_t old_val = *p_data; *p_data &= value; NRFX_CRITICAL_SECTION_EXIT(); return old_val; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_and(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_and_fetch(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(and, old_val, new_val, p_data, value); (void) old_val; return new_val; #else NRFX_CRITICAL_SECTION_ENTER(); *p_data &= value; uint32_t new_value = *p_data; NRFX_CRITICAL_SECTION_EXIT(); return new_value; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_fetch_xor(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_fetch_xor(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(eor, old_val, new_val, p_data, value); (void) new_val; return old_val; #else NRFX_CRITICAL_SECTION_ENTER(); uint32_t old_val = *p_data; *p_data ^= value; NRFX_CRITICAL_SECTION_EXIT(); return old_val; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_xor(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_xor_fetch(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(eor, old_val, new_val, p_data, value); (void) old_val; return new_val; #else NRFX_CRITICAL_SECTION_ENTER(); *p_data ^= value; uint32_t new_value = *p_data; NRFX_CRITICAL_SECTION_EXIT(); return new_value; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_fetch_add(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_fetch_add(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(add, old_val, new_val, p_data, value); (void) new_val; return old_val; #else NRFX_CRITICAL_SECTION_ENTER(); uint32_t old_val = *p_data; *p_data += value; NRFX_CRITICAL_SECTION_EXIT(); return old_val; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_add(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_add_fetch(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(add, old_val, new_val, p_data, value); (void) old_val; return new_val; #else NRFX_CRITICAL_SECTION_ENTER(); *p_data += value; uint32_t new_value = *p_data; NRFX_CRITICAL_SECTION_EXIT(); return new_value; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_fetch_sub(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_fetch_sub(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(sub, old_val, new_val, p_data, value); (void) new_val; return old_val; #else NRFX_CRITICAL_SECTION_ENTER(); uint32_t old_val = *p_data; *p_data -= value; NRFX_CRITICAL_SECTION_EXIT(); return old_val; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_sub(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_sub_fetch(p_data, value, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(sub, old_val, new_val, p_data, value); (void) old_val; return new_val; #else NRFX_CRITICAL_SECTION_ENTER(); *p_data -= value; uint32_t new_value = *p_data; NRFX_CRITICAL_SECTION_EXIT(); return new_value; #endif //NRFX_ATOMIC_USE_BUILT_IN } bool nrfx_atomic_u32_cmp_exch(nrfx_atomic_u32_t * p_data, uint32_t * p_expected, uint32_t desired) { #if NRFX_ATOMIC_USE_BUILT_IN return __atomic_compare_exchange(p_data, p_expected, &desired, 1, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) return nrfx_atomic_internal_cmp_exch(p_data, p_expected, desired); #else bool result; NRFX_CRITICAL_SECTION_ENTER(); if (*p_data == *p_expected) { *p_data = desired; result = true; } else { *p_expected = *p_data; result = false; } NRFX_CRITICAL_SECTION_EXIT(); return result; #endif } uint32_t nrfx_atomic_u32_fetch_sub_hs(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN uint32_t expected = *p_data; uint32_t new_val; do { if (expected >= value) { new_val = expected - value; } else { new_val = expected; } } while (!__atomic_compare_exchange(p_data, &expected, &new_val, 1, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)); return expected; #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(sub_hs, old_val, new_val, p_data, value); (void) new_val; return old_val; #else NRFX_CRITICAL_SECTION_ENTER(); uint32_t old_val = *p_data; *p_data -= value; NRFX_CRITICAL_SECTION_EXIT(); return old_val; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_u32_sub_hs(nrfx_atomic_u32_t * p_data, uint32_t value) { #if NRFX_ATOMIC_USE_BUILT_IN uint32_t expected = *p_data; uint32_t new_val; do { if (expected >= value) { new_val = expected - value; } else { new_val = expected; } } while (!__atomic_compare_exchange(p_data, &expected, &new_val, 1, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)); return new_val; #elif defined(NRFX_ATOMIC_STREX_LDREX_PRESENT) uint32_t old_val; uint32_t new_val; NRFX_ATOMIC_OP(sub_hs, old_val, new_val, p_data, value); (void) old_val; return new_val; #else NRFX_CRITICAL_SECTION_ENTER(); *p_data -= value; uint32_t new_value = *p_data; NRFX_CRITICAL_SECTION_EXIT(); return new_value; #endif //NRFX_ATOMIC_USE_BUILT_IN } uint32_t nrfx_atomic_flag_set_fetch(nrfx_atomic_flag_t * p_data) { return nrfx_atomic_u32_fetch_or(p_data, 1); } uint32_t nrfx_atomic_flag_set(nrfx_atomic_flag_t * p_data) { return nrfx_atomic_u32_or(p_data, 1); } uint32_t nrfx_atomic_flag_clear_fetch(nrfx_atomic_flag_t * p_data) { return nrfx_atomic_u32_fetch_and(p_data, 0); } uint32_t nrfx_atomic_flag_clear(nrfx_atomic_flag_t * p_data) { return nrfx_atomic_u32_and(p_data, 0); }