/** * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include "nordic_common.h" #include "coap_message.h" #include "coap_api.h" #include "iot_common.h" #include "sdk_config.h" #include "app_util.h" #define COAP_PAYLOAD_MARKER_SIZE 1 /**@brief Verify that there is a index available for a new option. */ #define OPTION_INDEX_AVAIL_CHECK(COUNT) \ if ((COUNT) >= COAP_MAX_NUMBER_OF_OPTIONS) \ { \ return (NRF_ERROR_NO_MEM | IOT_COAP_ERR_BASE); \ } #if (COAP_DISABLE_API_PARAM_CHECK == 0) /**@brief Verify NULL parameters are not passed to API by application. */ #define NULL_PARAM_CHECK(PARAM) \ if ((PARAM) == NULL) \ { \ return (NRF_ERROR_NULL | IOT_COAP_ERR_BASE); \ } #else #define NULL_PARAM_CHECK(PARAM) #define OPTION_INDEX_AVAIL_CHECK(COUNT) #endif // COAP_DISABLE_API_PARAM_CHECK uint32_t coap_message_create(coap_message_t * p_message, coap_message_conf_t * p_init_config) { NULL_PARAM_CHECK(p_message); NULL_PARAM_CHECK(p_init_config); // Setting default value for version. p_message->header.version = COAP_VERSION; // Copy values from the init config. p_message->header.type = p_init_config->type; p_message->header.token_len = p_init_config->token_len; p_message->header.code = p_init_config->code; p_message->header.id = p_init_config->id; p_message->response_callback = p_init_config->response_callback; p_message->p_arg = NULL; if (p_init_config->port.port_number == 0) { return (NRF_ERROR_INVALID_PARAM | IOT_COAP_ERR_BASE); } memcpy(&p_message->port, &p_init_config->port, sizeof(coap_port_t)); memcpy(p_message->token, p_init_config->token, sizeof(p_init_config->token)); return NRF_SUCCESS; } /**@brief Decode CoAP option * * @param[in] p_raw_option Pointer to the memory buffer where the raw option is located. * @param[inout] p_message Pointer to the current message. Used to retrieve information about * where current option delta and the size of free memory to add the * values of the option. Used as a container where to put * the parsed option. * @param[out] byte_count Number of bytes parsed. Used to indicate where the next option * might be located (if any left) in the raw message buffer. * * @retval NRF_SUCCESS If the option parsing went successful. * @retval NRF_ERROR_DATA_SIZE If there is no more space left in the free memory to add the * option value to the p_message. */ static uint32_t decode_option(const uint8_t * p_raw_option, coap_message_t * p_message, uint16_t * byte_count) { uint16_t byte_index = 0; uint8_t option_num = p_message->options_count; // Calculate the option number. uint16_t option_delta = (p_raw_option[byte_index] & 0xF0) >> 4; // Calculate the option length. uint16_t option_length = (p_raw_option[byte_index] & 0x0F); byte_index++; uint16_t acc_option_delta = p_message->options_delta; if (option_delta == 13) { // read one additional byte to get the extended delta. acc_option_delta += 13 + p_raw_option[byte_index++]; } else if (option_delta == 14) { // read one additional byte to get the extended delta. acc_option_delta += 269; acc_option_delta += (p_raw_option[byte_index++] << 8); acc_option_delta += (p_raw_option[byte_index++]); } else { acc_option_delta += option_delta; } // Set the accumlated delta as the option number. p_message->options[option_num].number = acc_option_delta; if (option_length == 13) { option_length = 13 + p_raw_option[byte_index++]; } else if (option_length == 14) { option_length = 269; option_length += (p_raw_option[byte_index++] << 8); option_length += p_raw_option[byte_index++]; } // Set the option length including extended bytes. p_message->options[option_num].length = option_length; // Point p_data to the memory where to find the option value. p_message->options[option_num].p_data = (uint8_t *)&p_raw_option[byte_index]; // Update the delta counter with latest option number. p_message->options_delta = p_message->options[option_num].number; byte_index += p_message->options[option_num].length; *byte_count = byte_index; return NRF_SUCCESS; } /**@brief Encode CoAP option delta and length bytes. * * @param[inout] encoded_value Value to encode. In return the value after encoding. * @param[out] encoded_value_ext The value of the encoded extended bytes. * * @return The size of the extended byte field. */ static inline uint8_t encode_extended_bytes(uint16_t * value, uint16_t * value_ext) { uint16_t raw_value = *value; uint8_t ext_size = 0; if (raw_value >= 269) { *value = 14; *value_ext = raw_value - 269; ext_size = 2; } else if (raw_value >= 13) { *value = 13; *value_ext = raw_value - 13; ext_size = 1; } else { *value = raw_value; *value_ext = 0; } return ext_size; } static uint32_t encode_option(uint8_t * p_buffer, coap_option_t * p_option, uint16_t * byte_count) { uint16_t delta_ext = 0; uint16_t delta = p_option->number; uint8_t delta_ext_size = encode_extended_bytes(&delta, &delta_ext); uint16_t length = p_option->length; uint16_t length_ext = 0; uint8_t length_ext_size = encode_extended_bytes(&length, &length_ext); if (p_buffer == NULL) { uint16_t header_size = 1; *byte_count = header_size + delta_ext_size + length_ext_size + p_option->length; return NRF_SUCCESS; } uint16_t byte_index = 0; // Add the option header. p_buffer[byte_index++] = ((delta & 0x0F) << 4) | (length & 0x0F); // Add option delta extended bytes to the buffer. if (delta_ext_size == 1) { // Add first byte of delta_ext to the option header. p_buffer[byte_index++] = (uint8_t)delta_ext; } else if (delta_ext_size == 2) { // uint16 in Network Byte Order. p_buffer[byte_index++] = (uint8_t)((delta_ext & 0xFF00) >> 8); p_buffer[byte_index++] = (uint8_t)((delta_ext & 0x00FF)); } if (length_ext_size == 1) { // Add first byte of length_ext to the option header. p_buffer[byte_index++] = (uint8_t)length_ext; } else if (length_ext_size == 2) { // uint16 in Network Byte Order. p_buffer[byte_index++] = (uint8_t)((length_ext & 0xFF00) >> 8); p_buffer[byte_index++] = (uint8_t)((length_ext & 0x00FF)); } memcpy(&p_buffer[byte_index], p_option->p_data, p_option->length); *byte_count = byte_index + p_option->length; return NRF_SUCCESS; } uint32_t coap_message_decode(coap_message_t * p_message, const uint8_t * p_raw_message, uint16_t message_len) { NULL_PARAM_CHECK(p_message); NULL_PARAM_CHECK(p_raw_message); // Check that the raw message contains the mandatory header. if (message_len < 4) { return (NRF_ERROR_INVALID_LENGTH | IOT_COAP_ERR_BASE); } // Parse the content of the raw message buffer. uint16_t byte_index = 0; // Parse the 4 byte CoAP header. p_message->header.version = (p_raw_message[byte_index] >> 6); p_message->header.type = (coap_msg_type_t)((p_raw_message[byte_index] >> 4) & 0x03); p_message->header.token_len = (p_raw_message[byte_index] & 0x0F); byte_index++; p_message->header.code = (coap_msg_code_t)p_raw_message[byte_index]; byte_index++; p_message->header.id = p_raw_message[byte_index++] << 8; p_message->header.id += p_raw_message[byte_index++]; // Parse the token, if any. for (uint8_t index = 0; (byte_index < message_len) && (index < p_message->header.token_len); index++) { p_message->token[index] = p_raw_message[byte_index++]; } p_message->options_count = 0; p_message->options_delta = 0; // Parse the options if any. while ((byte_index < message_len) && (p_raw_message[byte_index] != COAP_PAYLOAD_MARKER)) { uint32_t err_code; uint16_t byte_count = 0; err_code = decode_option(&p_raw_message[byte_index], p_message, &byte_count); if (err_code != NRF_SUCCESS) { return err_code; } p_message->options_count += 1; byte_index += byte_count; } // If there any more bytes to parse this would be the payload. if (byte_index < message_len) { // Verify that we have a payload marker. if (p_raw_message[byte_index] == COAP_PAYLOAD_MARKER) { byte_index++; } else { return COAP_MESSAGE_INVALID_CONTENT; } p_message->payload_len = message_len - byte_index; p_message->p_payload = (uint8_t *)&p_raw_message[byte_index]; } return NRF_SUCCESS; } uint32_t coap_message_encode(coap_message_t * p_message, uint8_t * p_buffer, uint16_t * p_length) { NULL_PARAM_CHECK(p_length); NULL_PARAM_CHECK(p_message); // calculated size uint16_t total_packet_size = 4; if (p_message->payload_len > 0) { total_packet_size += p_message->payload_len; total_packet_size += COAP_PAYLOAD_MARKER_SIZE; } if (p_message->header.token_len > 8) { return (NRF_ERROR_INVALID_DATA | IOT_COAP_ERR_BASE); } total_packet_size += p_message->header.token_len; total_packet_size += p_message->options_len; // If this was a length check, return after setting the length in the output parameter. if (*p_length == 0) { *p_length = total_packet_size; return NRF_SUCCESS; } // Check that the buffer provided is sufficient. if (*p_length < total_packet_size) { return (NRF_ERROR_DATA_SIZE | IOT_COAP_ERR_BASE); } if (((p_message->payload_len > 0 && p_message->p_payload == NULL)) || (p_buffer == NULL)) { return COAP_MESSAGE_ERROR_NULL; } // Start filling the bytes. uint16_t byte_index = 0; // TODO: Verify the values of the header fields. // if (version > 1) // if (p_message->type > COAP_TYPE_RST) // if (p_message->token_len > 8) p_buffer[byte_index] = (((p_message->header.version & 0x3) << 6) | ((p_message->header.type & 0x3) << 4)) | (p_message->header.token_len & 0x0F); byte_index++; p_buffer[byte_index] = p_message->header.code; byte_index++; p_buffer[byte_index++] = (p_message->header.id & 0xFF00) >> 8; p_buffer[byte_index++] = (p_message->header.id & 0x00FF); memcpy(&p_buffer[byte_index], p_message->token, p_message->header.token_len); byte_index += p_message->header.token_len; //memcpy(&p_buffer[byte_index], &p_message->p_data[0], p_message->options_len); for (uint8_t i = 0; i < p_message->options_count; i++) { uint32_t err_code; uint16_t byte_count = 0; err_code = encode_option(&p_buffer[byte_index], &p_message->options[i], &byte_count); if (err_code == NRF_SUCCESS) { byte_index += byte_count; } else { // Throw an error. } } if (p_message->payload_len > 0 && p_message->p_payload != NULL) { p_buffer[byte_index++] = 0xFF; memcpy(&p_buffer[byte_index], p_message->p_payload, p_message->payload_len); } *p_length = total_packet_size; return NRF_SUCCESS; } uint32_t coap_message_opt_empty_add(coap_message_t * p_message, uint16_t option_num) { OPTION_INDEX_AVAIL_CHECK(p_message->options_count); uint32_t err_code; uint16_t encoded_len = 0; uint8_t current_option_index = p_message->options_count; p_message->options[current_option_index].number = option_num - p_message->options_delta; p_message->options[current_option_index].length = encoded_len; // Set accumulated option delta for next option. p_message->options_delta = option_num; // Calculate option size uint16_t option_byte_count = 0; // do a length check to encode_option to get the header length. err_code = encode_option(NULL, &p_message->options[current_option_index], &option_byte_count); // Accumulate expected size of all options with headers. p_message->options_len += option_byte_count; p_message->options_count += 1; return err_code; } uint32_t coap_message_opt_uint_add(coap_message_t * p_message, uint16_t option_num, uint32_t data) { OPTION_INDEX_AVAIL_CHECK(p_message->options_count); uint32_t err_code; uint16_t encoded_len = p_message->data_len - p_message->options_offset; uint8_t current_option_index = p_message->options_count; uint8_t * p_next_option_data = &p_message->p_data[p_message->options_offset]; // If the value of the option is 0, do not encode the 0, as this can be omitted. (RFC7252 3.2) if (data == 0) { encoded_len = 0; } else { err_code = coap_opt_uint_encode(p_next_option_data, &encoded_len, data); if (err_code != NRF_SUCCESS) { return err_code; } } p_message->options[current_option_index].p_data = p_next_option_data; p_message->options[current_option_index].number = option_num - p_message->options_delta; p_message->options[current_option_index].length = encoded_len; // Set accumulated option delta for next option. p_message->options_delta = option_num; // Calculate option size. uint16_t option_byte_count = 0; // Do a length check to encode_option to get the header length. err_code = encode_option(NULL, &p_message->options[current_option_index], &option_byte_count); // Accumulate expected size of all options with headers. p_message->options_len += option_byte_count; p_message->options_count += 1; // Increase the pointer offset for the next option data in the scratch buffer. p_message->options_offset += encoded_len; return err_code; } uint32_t coap_message_opt_str_add(coap_message_t * p_message, uint16_t option_num, uint8_t * p_data, uint16_t length) { OPTION_INDEX_AVAIL_CHECK(p_message->options_count); uint32_t err_code; uint16_t encoded_len = length; uint8_t current_option_index = p_message->options_count; uint8_t * p_next_option_data = &p_message->p_data[p_message->options_offset]; err_code = coap_opt_string_encode(p_next_option_data, &encoded_len, p_data, length); if (err_code != NRF_SUCCESS) { return err_code; } p_message->options[current_option_index].p_data = p_next_option_data; p_message->options[current_option_index].number = option_num - p_message->options_delta; p_message->options[current_option_index].length = encoded_len; // Set accumulated option delta for next option. p_message->options_delta = option_num; // Calculate option size uint16_t option_byte_count = 0; // do a length check to encode_option to get the header length. err_code = encode_option(NULL, &p_message->options[current_option_index], &option_byte_count); // Accumulate expected size of all options with headers. p_message->options_len += option_byte_count; p_message->options_count += 1; p_message->options_offset += encoded_len; return err_code; } uint32_t coap_message_opt_opaque_add(coap_message_t * p_message, uint16_t option_num, uint8_t * p_data, uint16_t length) { OPTION_INDEX_AVAIL_CHECK(p_message->options_count); // Check if it is possible to add a new option of this length. if ((p_message->data_len - p_message->options_offset) < length) { return (NRF_ERROR_DATA_SIZE | IOT_COAP_ERR_BASE); } uint32_t err_code = NRF_SUCCESS; uint16_t encoded_len = length; uint8_t current_option_index = p_message->options_count; uint8_t * p_next_option_data = &p_message->p_data[p_message->options_offset]; memcpy(p_next_option_data, p_data, encoded_len); p_message->options[current_option_index].p_data = p_next_option_data; p_message->options[current_option_index].number = option_num - p_message->options_delta; p_message->options[current_option_index].length = encoded_len; // Set accumulated option delta for next option. p_message->options_delta = option_num; // Calculate option size uint16_t option_byte_count = 0; // do a length check to encode_option to get the header length. err_code = encode_option(NULL, &p_message->options[current_option_index], &option_byte_count); // Accumulate expected size of all options with headers. p_message->options_len += option_byte_count; p_message->options_count += 1; p_message->options_offset += encoded_len; return err_code; } uint32_t coap_message_payload_set(coap_message_t * p_message, void * p_payload, uint16_t payload_len) { // Check that there is available memory in the p_message->p_data scratch buffer. if (payload_len > (COAP_MESSAGE_DATA_MAX_SIZE - p_message->options_offset)) { return (NRF_ERROR_NO_MEM | IOT_COAP_ERR_BASE); } p_message->p_payload = &p_message->p_data[p_message->options_offset]; p_message->payload_len = payload_len; memcpy(p_message->p_payload, p_payload, payload_len); return NRF_SUCCESS; } uint32_t coap_message_remote_addr_set(coap_message_t * p_message, coap_remote_t * p_address) { memcpy(&p_message->remote, p_address, sizeof(coap_remote_t)); return NRF_SUCCESS; } uint32_t coap_message_opt_index_get(uint8_t * p_index, coap_message_t * p_message, uint16_t option) { NULL_PARAM_CHECK(p_index); NULL_PARAM_CHECK(p_message); uint8_t index; for (index = 0; index < p_message->options_count; index++) { if (p_message->options[index].number == option) { *p_index = index; return NRF_SUCCESS; } } return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE); } uint32_t coap_message_opt_present(coap_message_t * p_message, uint16_t option) { NULL_PARAM_CHECK(p_message); uint8_t index; for (index = 0; index < p_message->options_count; index++) { if (p_message->options[index].number == option) { return NRF_SUCCESS; } } return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE); } static uint32_t bit_to_content_format(coap_content_type_t * p_ct, uint32_t bit) { switch (bit) { case COAP_CT_MASK_PLAIN_TEXT: *p_ct = COAP_CT_PLAIN_TEXT; break; case COAP_CT_MASK_APP_LINK_FORMAT: *p_ct = COAP_CT_APP_LINK_FORMAT; break; case COAP_CT_MASK_APP_XML: *p_ct = COAP_CT_APP_XML; break; case COAP_CT_MASK_APP_OCTET_STREAM: *p_ct = COAP_CT_APP_OCTET_STREAM; break; case COAP_CT_MASK_APP_EXI: *p_ct = COAP_CT_APP_EXI; break; case COAP_CT_MASK_APP_JSON: *p_ct = COAP_CT_APP_JSON; break; default: return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE); } return NRF_SUCCESS; } static uint32_t content_format_to_bit(coap_content_type_t ct) { uint32_t mask = 0; switch (ct) { case COAP_CT_PLAIN_TEXT: mask = COAP_CT_MASK_PLAIN_TEXT; break; case COAP_CT_APP_LINK_FORMAT: mask = COAP_CT_MASK_APP_LINK_FORMAT; break; case COAP_CT_APP_XML: mask = COAP_CT_MASK_APP_XML; break; case COAP_CT_APP_OCTET_STREAM: mask = COAP_CT_MASK_APP_OCTET_STREAM; break; case COAP_CT_APP_EXI: mask = COAP_CT_MASK_APP_EXI; break; case COAP_CT_APP_JSON: mask = COAP_CT_MASK_APP_JSON; break; default: break; } return mask; } uint32_t coap_message_ct_mask_get(coap_message_t * p_message, uint32_t * p_mask) { NULL_PARAM_CHECK(p_message); NULL_PARAM_CHECK(p_mask); (*p_mask) = 0; for (uint8_t index = 0; index < p_message->options_count; index++) { if (p_message->options[index].number == COAP_OPT_CONTENT_FORMAT) { uint32_t value; uint32_t err_code = coap_opt_uint_decode(&value, p_message->options[index].length, p_message->options[index].p_data); if (err_code == NRF_SUCCESS) { coap_content_type_t ct = (coap_content_type_t)value; *p_mask |= content_format_to_bit(ct); } else { return err_code; } } } return NRF_SUCCESS; } uint32_t coap_message_accept_mask_get(coap_message_t * p_message, uint32_t * p_mask) { NULL_PARAM_CHECK(p_message); NULL_PARAM_CHECK(p_mask); (*p_mask) = 0; for (uint8_t index = 0; index < p_message->options_count; index++) { if (p_message->options[index].number == COAP_OPT_ACCEPT) { uint32_t value; uint32_t err_code = coap_opt_uint_decode(&value, p_message->options[index].length, p_message->options[index].p_data); if (err_code == NRF_SUCCESS) { coap_content_type_t ct = (coap_content_type_t)value; (*p_mask) |= content_format_to_bit(ct); } else { return err_code; } } } return NRF_SUCCESS; } uint32_t coap_message_ct_match_select(coap_content_type_t * p_ct, coap_message_t * p_message, coap_resource_t * p_resource) { // Check ACCEPT options uint32_t accept_mask = 0; (void)coap_message_accept_mask_get(p_message, &accept_mask); if (accept_mask == 0) { // Default to plain text if option not set. accept_mask = COAP_CT_MASK_PLAIN_TEXT; } // Select the first common content-type between the resource and the CoAP client. uint32_t common_ct = p_resource->ct_support_mask & accept_mask; uint32_t bit_index; for (bit_index = 0; bit_index < 32; bit_index++) { if (((common_ct >> bit_index) & 0x1 ) == 1) { break; } } uint32_t err_code = bit_to_content_format(p_ct, 1 << bit_index); return err_code; }