/** * Copyright (c) 2009 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include "cherry8x16.h" #include "nrf.h" #define CHERRY8x16_NUM_OF_COLUMNS 16 // !< Number of columns in the keyboard matrix #define CHERRY8x16_NUM_OF_ROWS 8 // !< Number of rows in the keyboard matrix #define MODIFIER_HID_START 0xE0 #define MODIFIER_HID_END 0xE7 static uint8_t m_currently_pressed_keys[CHERRY8x16_MAX_NUM_OF_PRESSED_KEYS]; //!< Array holding currently pressed keys. Filled up from index 0. Values are static uint8_t m_transmitted_keys[CHERRY8x16_MAX_NUM_OF_PRESSED_KEYS]; //!< Array holding the keys that have already been transmitted. static uint8_t m_num_of_currently_pressed_keys; //!< Number of keys in m_currently_pressed_keys static uint8_t m_number_of_transmitted_keys; //!< Number of keys in m_transmitted_keys static uint8_t m_key_packet[KEY_PACKET_SIZE]; //!< Stores last created key packet. One byte is used for modifier keys, one for OEMs. Key values are USB HID keycodes. static const uint8_t volatile * m_row_port; //!< Pointer to location where row IO can be read static uint16_t volatile * m_column_port; //!< Pointer to location where column IO can be written static const uint8_t * matrix_lookup; //!< Pointer to the key lookup matrix in use /** Table containing the mapping between the key matrix and the HID Usage codes for each key. */ static const uint8_t default_matrix_lookup[CHERRY8x16_NUM_OF_COLUMNS * CHERRY8x16_NUM_OF_ROWS] = { 0xE7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE1, 0xE6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE2, 0xE5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x3E, 0x3D, 0x3C, 0x3B, 0x3A, 0x3F, 0x40, 0x1E, 0x23, 0x22, 0x21, 0x20, 0x1F, 0x24, 0x25, 0x4F, 0x43, 0x47, 0x53, 0x46, 0x48, 0x42, 0x41, 0x51, 0x2D, 0x2E, 0x2A, 0x00, 0x4A, 0x27, 0x26, 0x52, 0x13, 0x2F, 0x30, 0x00, 0x4B, 0x12, 0x0C, 0x50, 0x33, 0x34, 0x32, 0x28, 0x4E, 0x0F, 0x0E, 0x2C, 0x38, 0x4C, 0x49, 0x65, 0x4D, 0x37, 0x36, 0x35, 0x05, 0x19, 0x06, 0x1B, 0x1D, 0x11, 0x10, 0x39, 0x0A, 0x09, 0x07, 0x16, 0x04, 0x0B, 0x0D, 0x2B, 0x17, 0x15, 0x08, 0x1A, 0x14, 0x1C, 0x18 }; static bool cherry8x16_have_keys_changed(const uint8_t * state_now, uint8_t number_of_now_pressed_keys, const uint8_t * state_before, uint8_t number_of_before_pressed_keys); static bool cherry8x16_keymatrix_read(uint8_t * pressed_keys, uint8_t * number_of_pressed_keys); static void cherry8x16_keypacket_addkey(uint8_t key); static void cherry8x16_keypacket_create(uint8_t * key_packet, uint8_t key_packet_size); static void cherry8x16_remap_fn_keys(uint8_t * keys, uint8_t number_of_keys); static uint8_t cherry8x16_row_read(void); cherry8x16_status_t cherry8x16_init(const uint8_t volatile * row_port, uint16_t * column_port, const uint8_t * key_lookup_matrix) { cherry8x16_status_t status = CHERRY8x16_OK; if (row_port == 0 || column_port == 0) { status = CHERRY8x16_INVALID_PARAMETER; } else { m_row_port = row_port; m_column_port = column_port; *m_column_port = 0x0000; if (*m_row_port != 0x00) { status = CHERRY8x16_NOT_DETECTED; } else { m_num_of_currently_pressed_keys = 0; m_number_of_transmitted_keys = 0; for (uint_fast8_t i = CHERRY8x16_MAX_NUM_OF_PRESSED_KEYS; i--;) { m_currently_pressed_keys[i] = 0; m_transmitted_keys[i] = 0; } } if (key_lookup_matrix == CHERRY8x16_DEFAULT_KEY_LOOKUP_MATRIX) { matrix_lookup = default_matrix_lookup; } else { matrix_lookup = key_lookup_matrix; } } return status; } bool cherry8x16_new_packet(const uint8_t ** p_key_packet, uint8_t * p_key_packet_size) { bool new_packet_prepared; // Save currently pressed keys for (uint_fast8_t i = CHERRY8x16_MAX_NUM_OF_PRESSED_KEYS; i--; ) { m_transmitted_keys[i] = m_currently_pressed_keys[i]; } m_number_of_transmitted_keys = m_num_of_currently_pressed_keys; // Create a new packet if key states have changed and there are no keys blocking each other (ghosting/phantom keys) if (cherry8x16_keymatrix_read(m_currently_pressed_keys, &m_num_of_currently_pressed_keys)) { if (cherry8x16_have_keys_changed(m_currently_pressed_keys, m_num_of_currently_pressed_keys, m_transmitted_keys, m_number_of_transmitted_keys)) { cherry8x16_keypacket_create(&m_key_packet[0], KEY_PACKET_SIZE); *p_key_packet = &m_key_packet[0]; *p_key_packet_size = KEY_PACKET_SIZE; new_packet_prepared = true; } else { // The same keys are still pressed, no need to create a new packet new_packet_prepared = false; } } else { // Ghosting detected. Don't create a packet. new_packet_prepared = false; } return new_packet_prepared; } /** * @brief Function for reading and returning keyboard matrix row state. * * @return uint8_t Row state */ static uint8_t cherry8x16_row_read(void) { return *m_row_port; } /** * @brief Function for reading the keyboard matrix state and stores the pressed keys to an array. * * This function resolves keys from the matrix and finds their corresponding HID usage codes * If there are any ghost key conditions the packet will be discarded * @param pressed_keys Array holding pressed keys. Must be at least CHERRY8x16_MAX_NUM_OF_PRESSED_KEYS in size. * @param number_of_pressed_keys Pointer to variable where number of pressed keys will be stored. * @return * @retval true If no keys were blocking each other. * @retval false If some keys were blocking each other o rno key is pressed. */ static bool cherry8x16_keymatrix_read(uint8_t * pressed_keys, uint8_t * number_of_pressed_keys) { uint_fast8_t row_state[CHERRY8x16_NUM_OF_COLUMNS]; uint_fast8_t blocking_mask = 0; *number_of_pressed_keys = 0; for (uint_fast8_t column = CHERRY8x16_NUM_OF_COLUMNS; column--;) { // drive column under test *m_column_port = (uint16_t)(1UL << column); row_state[column] = cherry8x16_row_read(); // Check if any keys are pressed if (row_state[column] != 0) { uint_fast8_t detected_keypresses_on_column = 0; // Loop through rows, check for active rows and add pressed keys to the array for (uint_fast8_t row = CHERRY8x16_NUM_OF_ROWS; row--;) { if (row_state[column] & (1U << row)) { if (*number_of_pressed_keys < CHERRY8x16_MAX_NUM_OF_PRESSED_KEYS) { *pressed_keys = matrix_lookup[column * CHERRY8x16_NUM_OF_ROWS + row]; pressed_keys++; (*number_of_pressed_keys)++; } detected_keypresses_on_column++; } } if (detected_keypresses_on_column > 1) { if (blocking_mask & row_state[column]) { // Cannot determine reliably all pressed keys, two or more keys are blocking each other. return false; } } blocking_mask |= row_state[column]; } } return true; } /** * @brief Function for remapping the keypad, F11 and F12 keys in case when Fn key is pressed. * * @param keys Array holding pressed keys. * @param number_of_keys Number of elements if 'keys' array. */ static void cherry8x16_remap_fn_keys(uint8_t * keys, uint8_t number_of_keys) { /*lint -e845 -save // A zero has been given as right argument to operator '<<'" */ /*lint -e778 -save // Constant expression evaluates to zero */ #define MODIFIER_LEFT_CONTROL_HID 0xE0 #define MODIFER_RIGHT_CONTROL_HID 0xE4 // Check if Fn key is pressed along with any other modifier key (only usage now is Fn + Left_Ctrl = Right Ctrl) // So we modify the modifier byte if Fn + Left_Ctrl is pressed, HID for left_Ctrl = 0xE0 if ( keys[0] & (1UL << (MODIFIER_LEFT_CONTROL_HID - MODIFIER_HID_START)) ) { keys[0] &= ~(1UL << (MODIFIER_LEFT_CONTROL_HID - MODIFIER_HID_START)); keys[0] |= (1UL << (MODIFER_RIGHT_CONTROL_HID - MODIFIER_HID_START)); } /*lint -restore */ /*lint -restore */ for (uint_fast8_t i = 2; i < number_of_keys; i++) { switch (keys[i]) { case 0x10: // 'M' keys[i] = 0x62; // Keypad 0 break; case 0x37: // '>' keys[i] = 0x63; // Keypad . break; case 0x38: // '/' keys[i] = 0x54; // Keypad / break; case 0x0D: // 'J' keys[i] = 0x59; // Keypad 1 break; case 0x0E: // 'K' keys[i] = 0x5A; // Keypad 2 break; case 0x0F: // 'L' keys[i] = 0x5B; // Keypad 3 break; case 0x33: // '' keys[i] = 0x57; // Keypad + break; case 0x28: // 'Enter' keys[i] = 0x58; // Keypad enter break; case 0x18: // 'U' keys[i] = 0x5C; // Keypad 4 break; case 0x0C: // 'I' keys[i] = 0x5D; // Keypad 5 break; case 0x12: // 'O' keys[i] = 0x5E; // Keypad 6 break; case 0x13: // 'P' keys[i] = 0x56; // Keypad - break; case 0x24: // '7' keys[i] = 0x5F; // Keypad 7 break; case 0x25: // '8' keys[i] = 0x60; // Keypad 8 break; case 0x26: // '9' keys[i] = 0x61; // Keypad 9 break; case 0x27: // '0' keys[i] = 0x55; // Keypad * break; case 0x3A: // 'F1' keys[i] = 0x44; // 'F11' break; case 0x3B: // 'F2' keys[i] = 0x45; // 'F12' break; default: break; } } } /** * @brief Function for determining whether the keyboard matrix state has changed compared to the state before. * * @param state_now List of pressed keys in current state * @param number_of_now_pressed_keys Number of pressed keys in current state * @param state_before List of pressed keys in previous state * @param number_of_before_pressed_keys Number of pressed keys in previous state * @return * @retval true If keyboard matrix is different compared to state before. * @retval false If keyboard matrix is the same compared to state before. */ static bool cherry8x16_have_keys_changed(const uint8_t * state_now, uint8_t number_of_now_pressed_keys, const uint8_t * state_before, uint8_t number_of_before_pressed_keys) { if (number_of_now_pressed_keys != number_of_before_pressed_keys) { return true; } else { for (uint_fast8_t i = number_of_now_pressed_keys; i--;) { if (state_now[i] != state_before[i]) { return true; } } } return false; } /** * @brief Function for adding a key to the key packet. * * If key is found to be in the packet, it will not be added twice. * Attempts to add more keys than the buffer capacity allows will be silently ignored. * * @param key Key to add */ static void cherry8x16_keypacket_addkey(uint8_t key) { for (uint_fast8_t i = KEY_PACKET_KEY_INDEX; i < KEY_PACKET_SIZE; i++) { if (m_key_packet[i] == key) { return; } } for (uint_fast8_t i = KEY_PACKET_KEY_INDEX; i < KEY_PACKET_SIZE; i++) { if (m_key_packet[i] == KEY_PACKET_NO_KEY) { m_key_packet[i] = key; return; } } } /** * @brief Function for creating a new key packet. * * This function uses @ref m_currently_pressed_keys to determine pressed keys. * Priority is given to those keys that were found in the previous packet. * All modifier keys can be found in all packets. * If Fn key is detected to be pressed, some keys are remapped to different functions. * * @param key_packet Pointer to location where packet contents will be put * @param key_packet_size Key packet size in bytes */ static void cherry8x16_keypacket_create(uint8_t * key_packet, uint8_t key_packet_size) { // Clear key_packet contents for (uint_fast8_t i = KEY_PACKET_KEY_INDEX; i < key_packet_size; i++) { key_packet[i] = KEY_PACKET_NO_KEY; } key_packet[KEY_PACKET_MODIFIER_KEY_INDEX] = 0; key_packet[KEY_PACKET_RESERVED_INDEX] = 0; // Give priority to keys that were already pressed when we transmitted them the last time. for (uint_fast8_t i = 0; i < m_number_of_transmitted_keys; i++) { for (uint_fast8_t j = 0; j < m_num_of_currently_pressed_keys; j++) { if (m_transmitted_keys[i] == m_currently_pressed_keys[j]) { cherry8x16_keypacket_addkey(m_currently_pressed_keys[j]); break; } } } bool fn_key_is_set = false; // Detect if Fn is pressed, detect modifier keys, and add rest of the keys to the packet for (uint_fast8_t i = 0; i < m_num_of_currently_pressed_keys; i++) { if (m_currently_pressed_keys[i] == 0xFF) // Pressing Fn key changes function of certain keys and it must handled by the firmware { fn_key_is_set = true; } // Modifier HID usage codes are from 0xE0 to 0xE7 else if (m_currently_pressed_keys[i] >= MODIFIER_HID_START && m_currently_pressed_keys[i] <= MODIFIER_HID_END) // Detect and set modifier keys { key_packet[KEY_PACKET_MODIFIER_KEY_INDEX] |= (uint8_t)(1U << (m_currently_pressed_keys[i] - MODIFIER_HID_START)); } else if (m_currently_pressed_keys[i] != 0) { cherry8x16_keypacket_addkey(m_currently_pressed_keys[i]); } } if (fn_key_is_set) { cherry8x16_remap_fn_keys(&key_packet[0], KEY_PACKET_MAX_KEYS); } }