/** * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_PWM_H__ #define NRF_PWM_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_pwm_hal PWM HAL * @{ * @ingroup nrf_pwm * @brief Hardware access layer for managing the Pulse Width Modulation (PWM) peripheral. */ /** * @brief This value can be provided as a parameter for the @ref nrf_pwm_pins_set * function call to specify that a given output channel shall not be * connected to a physical pin. */ #define NRF_PWM_PIN_NOT_CONNECTED 0xFFFFFFFF /** * @brief Number of channels in each Pointer to the peripheral registers structure. */ #define NRF_PWM_CHANNEL_COUNT 4 /** * @brief PWM tasks. */ typedef enum { /*lint -save -e30*/ NRF_PWM_TASK_STOP = offsetof(NRF_PWM_Type, TASKS_STOP), ///< Stops PWM pulse generation on all channels at the end of the current PWM period, and stops the sequence playback. NRF_PWM_TASK_SEQSTART0 = offsetof(NRF_PWM_Type, TASKS_SEQSTART[0]), ///< Starts playback of sequence 0. NRF_PWM_TASK_SEQSTART1 = offsetof(NRF_PWM_Type, TASKS_SEQSTART[1]), ///< Starts playback of sequence 1. NRF_PWM_TASK_NEXTSTEP = offsetof(NRF_PWM_Type, TASKS_NEXTSTEP) ///< Steps by one value in the current sequence if the decoder is set to @ref NRF_PWM_STEP_TRIGGERED mode. /*lint -restore*/ } nrf_pwm_task_t; /** * @brief PWM events. */ typedef enum { /*lint -save -e30*/ NRF_PWM_EVENT_STOPPED = offsetof(NRF_PWM_Type, EVENTS_STOPPED), ///< Response to STOP task, emitted when PWM pulses are no longer generated. NRF_PWM_EVENT_SEQSTARTED0 = offsetof(NRF_PWM_Type, EVENTS_SEQSTARTED[0]), ///< First PWM period started on sequence 0. NRF_PWM_EVENT_SEQSTARTED1 = offsetof(NRF_PWM_Type, EVENTS_SEQSTARTED[1]), ///< First PWM period started on sequence 1. NRF_PWM_EVENT_SEQEND0 = offsetof(NRF_PWM_Type, EVENTS_SEQEND[0]), ///< Emitted at the end of every sequence 0 when its last value has been read from RAM. NRF_PWM_EVENT_SEQEND1 = offsetof(NRF_PWM_Type, EVENTS_SEQEND[1]), ///< Emitted at the end of every sequence 1 when its last value has been read from RAM. NRF_PWM_EVENT_PWMPERIODEND = offsetof(NRF_PWM_Type, EVENTS_PWMPERIODEND), ///< Emitted at the end of each PWM period. NRF_PWM_EVENT_LOOPSDONE = offsetof(NRF_PWM_Type, EVENTS_LOOPSDONE) ///< Concatenated sequences have been played the requested number of times. /*lint -restore*/ } nrf_pwm_event_t; /** * @brief PWM interrupts. */ typedef enum { NRF_PWM_INT_STOPPED_MASK = PWM_INTENSET_STOPPED_Msk, ///< Interrupt on STOPPED event. NRF_PWM_INT_SEQSTARTED0_MASK = PWM_INTENSET_SEQSTARTED0_Msk, ///< Interrupt on SEQSTARTED[0] event. NRF_PWM_INT_SEQSTARTED1_MASK = PWM_INTENSET_SEQSTARTED1_Msk, ///< Interrupt on SEQSTARTED[1] event. NRF_PWM_INT_SEQEND0_MASK = PWM_INTENSET_SEQEND0_Msk, ///< Interrupt on SEQEND[0] event. NRF_PWM_INT_SEQEND1_MASK = PWM_INTENSET_SEQEND1_Msk, ///< Interrupt on SEQEND[1] event. NRF_PWM_INT_PWMPERIODEND_MASK = PWM_INTENSET_PWMPERIODEND_Msk, ///< Interrupt on PWMPERIODEND event. NRF_PWM_INT_LOOPSDONE_MASK = PWM_INTENSET_LOOPSDONE_Msk ///< Interrupt on LOOPSDONE event. } nrf_pwm_int_mask_t; /** * @brief PWM shortcuts. */ typedef enum { NRF_PWM_SHORT_SEQEND0_STOP_MASK = PWM_SHORTS_SEQEND0_STOP_Msk, ///< Shortcut between SEQEND[0] event and STOP task. NRF_PWM_SHORT_SEQEND1_STOP_MASK = PWM_SHORTS_SEQEND1_STOP_Msk, ///< Shortcut between SEQEND[1] event and STOP task. NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART0_Msk, ///< Shortcut between LOOPSDONE event and SEQSTART[0] task. NRF_PWM_SHORT_LOOPSDONE_SEQSTART1_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART1_Msk, ///< Shortcut between LOOPSDONE event and SEQSTART[1] task. NRF_PWM_SHORT_LOOPSDONE_STOP_MASK = PWM_SHORTS_LOOPSDONE_STOP_Msk ///< Shortcut between LOOPSDONE event and STOP task. } nrf_pwm_short_mask_t; /** * @brief PWM modes of operation. */ typedef enum { NRF_PWM_MODE_UP = PWM_MODE_UPDOWN_Up, ///< Up counter (edge-aligned PWM duty cycle). NRF_PWM_MODE_UP_AND_DOWN = PWM_MODE_UPDOWN_UpAndDown, ///< Up and down counter (center-aligned PWM duty cycle). } nrf_pwm_mode_t; /** * @brief PWM base clock frequencies. */ typedef enum { NRF_PWM_CLK_16MHz = PWM_PRESCALER_PRESCALER_DIV_1, ///< 16 MHz / 1 = 16 MHz. NRF_PWM_CLK_8MHz = PWM_PRESCALER_PRESCALER_DIV_2, ///< 16 MHz / 2 = 8 MHz. NRF_PWM_CLK_4MHz = PWM_PRESCALER_PRESCALER_DIV_4, ///< 16 MHz / 4 = 4 MHz. NRF_PWM_CLK_2MHz = PWM_PRESCALER_PRESCALER_DIV_8, ///< 16 MHz / 8 = 2 MHz. NRF_PWM_CLK_1MHz = PWM_PRESCALER_PRESCALER_DIV_16, ///< 16 MHz / 16 = 1 MHz. NRF_PWM_CLK_500kHz = PWM_PRESCALER_PRESCALER_DIV_32, ///< 16 MHz / 32 = 500 kHz. NRF_PWM_CLK_250kHz = PWM_PRESCALER_PRESCALER_DIV_64, ///< 16 MHz / 64 = 250 kHz. NRF_PWM_CLK_125kHz = PWM_PRESCALER_PRESCALER_DIV_128 ///< 16 MHz / 128 = 125 kHz. } nrf_pwm_clk_t; /** * @brief PWM decoder load modes. * * The selected mode determines how the sequence data is read from RAM and * spread to the compare registers. */ typedef enum { NRF_PWM_LOAD_COMMON = PWM_DECODER_LOAD_Common, ///< 1st half word (16-bit) used in all PWM channels (0-3). NRF_PWM_LOAD_GROUPED = PWM_DECODER_LOAD_Grouped, ///< 1st half word (16-bit) used in channels 0 and 1; 2nd word in channels 2 and 3. NRF_PWM_LOAD_INDIVIDUAL = PWM_DECODER_LOAD_Individual, ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; 3rd in channel 2; 4th in channel 3. NRF_PWM_LOAD_WAVE_FORM = PWM_DECODER_LOAD_WaveForm ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; ... ; 4th as the top value for the pulse generator counter. } nrf_pwm_dec_load_t; /** * @brief PWM decoder next step modes. * * The selected mode determines when the next value from the active sequence * is loaded. */ typedef enum { NRF_PWM_STEP_AUTO = PWM_DECODER_MODE_RefreshCount, ///< Automatically after the current value is played and repeated the requested number of times. NRF_PWM_STEP_TRIGGERED = PWM_DECODER_MODE_NextStep ///< When the @ref NRF_PWM_TASK_NEXTSTEP task is triggered. } nrf_pwm_dec_step_t; /** * @brief Type used for defining duty cycle values for a sequence * loaded in @ref NRF_PWM_LOAD_COMMON mode. */ typedef uint16_t nrf_pwm_values_common_t; /** * @brief Structure for defining duty cycle values for a sequence * loaded in @ref NRF_PWM_LOAD_GROUPED mode. */ typedef struct { uint16_t group_0; ///< Duty cycle value for group 0 (channels 0 and 1). uint16_t group_1; ///< Duty cycle value for group 1 (channels 2 and 3). } nrf_pwm_values_grouped_t; /** * @brief Structure for defining duty cycle values for a sequence * loaded in @ref NRF_PWM_LOAD_INDIVIDUAL mode. */ typedef struct { uint16_t channel_0; ///< Duty cycle value for channel 0. uint16_t channel_1; ///< Duty cycle value for channel 1. uint16_t channel_2; ///< Duty cycle value for channel 2. uint16_t channel_3; ///< Duty cycle value for channel 3. } nrf_pwm_values_individual_t; /** * @brief Structure for defining duty cycle values for a sequence * loaded in @ref NRF_PWM_LOAD_WAVE_FORM mode. */ typedef struct { uint16_t channel_0; ///< Duty cycle value for channel 0. uint16_t channel_1; ///< Duty cycle value for channel 1. uint16_t channel_2; ///< Duty cycle value for channel 2. uint16_t counter_top; ///< Top value for the pulse generator counter. } nrf_pwm_values_wave_form_t; /** * @brief Union grouping pointers to arrays of duty cycle values applicable to * various loading modes. */ typedef union { nrf_pwm_values_common_t const * p_common; ///< Pointer to be used in @ref NRF_PWM_LOAD_COMMON mode. nrf_pwm_values_grouped_t const * p_grouped; ///< Pointer to be used in @ref NRF_PWM_LOAD_GROUPED mode. nrf_pwm_values_individual_t const * p_individual; ///< Pointer to be used in @ref NRF_PWM_LOAD_INDIVIDUAL mode. nrf_pwm_values_wave_form_t const * p_wave_form; ///< Pointer to be used in @ref NRF_PWM_LOAD_WAVE_FORM mode. uint16_t const * p_raw; ///< Pointer providing raw access to the values. } nrf_pwm_values_t; /** * @brief Structure for defining a sequence of PWM duty cycles. * * When the sequence is set (by a call to @ref nrf_pwm_sequence_set), the * provided duty cycle values are not copied. The @p values pointer is stored * in the peripheral's internal register, and the values are loaded from RAM * during the sequence playback. Therefore, you must ensure that the values * do not change before and during the sequence playback (for example, * the values cannot be placed in a local variable that is allocated on stack). * If the sequence is played in a loop and the values should be updated * before the next iteration, it is safe to modify them when the corresponding * event signaling the end of sequence occurs (@ref NRF_PWM_EVENT_SEQEND0 * or @ref NRF_PWM_EVENT_SEQEND1, respectively). * * @note The @p repeats and @p end_delay values (which are written to the * SEQ[n].REFRESH and SEQ[n].ENDDELAY registers in the peripheral, * respectively) are ignored at the end of a complex sequence * playback, indicated by the LOOPSDONE event. * See the @linkProductSpecification52 for more information. */ typedef struct { nrf_pwm_values_t values; ///< Pointer to an array with duty cycle values. This array must be in Data RAM. /**< This field is defined as an union of pointers * to provide a convenient way to define duty * cycle values in various loading modes * (see @ref nrf_pwm_dec_load_t). * In each value, the most significant bit (15) * determines the polarity of the output and the * others (14-0) compose the 15-bit value to be * compared with the pulse generator counter. */ uint16_t length; ///< Number of 16-bit values in the array pointed by @p values. uint32_t repeats; ///< Number of times that each duty cycle should be repeated (after being played once). Ignored in @ref NRF_PWM_STEP_TRIGGERED mode. uint32_t end_delay; ///< Additional time (in PWM periods) that the last duty cycle is to be kept after the sequence is played. Ignored in @ref NRF_PWM_STEP_TRIGGERED mode. } nrf_pwm_sequence_t; /** * @brief Helper macro for calculating the number of 16-bit values in specified * array of duty cycle values. */ #define NRF_PWM_VALUES_LENGTH(array) (sizeof(array) / sizeof(uint16_t)) /** * @brief Function for activating a specific PWM task. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] task Task to activate. */ __STATIC_INLINE void nrf_pwm_task_trigger(NRF_PWM_Type * p_reg, nrf_pwm_task_t task); /** * @brief Function for getting the address of a specific PWM task register. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] task Requested task. * * @return Address of the specified task register. */ __STATIC_INLINE uint32_t nrf_pwm_task_address_get(NRF_PWM_Type const * p_reg, nrf_pwm_task_t task); /** * @brief Function for clearing a specific PWM event. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] event Event to clear. */ __STATIC_INLINE void nrf_pwm_event_clear(NRF_PWM_Type * p_reg, nrf_pwm_event_t event); /** * @brief Function for checking the state of a specific PWM event. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] event Event to check. * * @retval true If the event is set. * @retval false If the event is not set. */ __STATIC_INLINE bool nrf_pwm_event_check(NRF_PWM_Type const * p_reg, nrf_pwm_event_t event); /** * @brief Function for getting the address of a specific PWM event register. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] event Requested event. * * @return Address of the specified event register. */ __STATIC_INLINE uint32_t nrf_pwm_event_address_get(NRF_PWM_Type const * p_reg, nrf_pwm_event_t event); /** * @brief Function for enabling specified shortcuts. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] pwm_shorts_mask Shortcuts to enable. */ __STATIC_INLINE void nrf_pwm_shorts_enable(NRF_PWM_Type * p_reg, uint32_t pwm_shorts_mask); /** * @brief Function for disabling specified shortcuts. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] pwm_shorts_mask Shortcuts to disable. */ __STATIC_INLINE void nrf_pwm_shorts_disable(NRF_PWM_Type * p_reg, uint32_t pwm_shorts_mask); /** * @brief Function for setting the configuration of PWM shortcuts. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] pwm_shorts_mask Shortcuts configuration to set. */ __STATIC_INLINE void nrf_pwm_shorts_set(NRF_PWM_Type * p_reg, uint32_t pwm_shorts_mask); /** * @brief Function for enabling specified interrupts. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] pwm_int_mask Interrupts to enable. */ __STATIC_INLINE void nrf_pwm_int_enable(NRF_PWM_Type * p_reg, uint32_t pwm_int_mask); /** * @brief Function for disabling specified interrupts. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] pwm_int_mask Interrupts to disable. */ __STATIC_INLINE void nrf_pwm_int_disable(NRF_PWM_Type * p_reg, uint32_t pwm_int_mask); /** * @brief Function for setting the configuration of PWM interrupts. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] pwm_int_mask Interrupts configuration to set. */ __STATIC_INLINE void nrf_pwm_int_set(NRF_PWM_Type * p_reg, uint32_t pwm_int_mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] pwm_int Interrupt to check. * * @retval true If the interrupt is enabled. * @retval false If the interrupt is not enabled. */ __STATIC_INLINE bool nrf_pwm_int_enable_check(NRF_PWM_Type const * p_reg, nrf_pwm_int_mask_t pwm_int); /** * @brief Function for enabling the PWM peripheral. * * @param[in] p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE void nrf_pwm_enable(NRF_PWM_Type * p_reg); /** * @brief Function for disabling the PWM peripheral. * * @param[in] p_reg Pointer to the peripheral registers structure. */ __STATIC_INLINE void nrf_pwm_disable(NRF_PWM_Type * p_reg); /** * @brief Function for assigning pins to PWM output channels. * * Usage of all PWM output channels is optional. If a given channel is not * needed, pass the @ref NRF_PWM_PIN_NOT_CONNECTED value instead of its pin * number. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] out_pins Array with pin numbers for individual PWM output channels. */ __STATIC_INLINE void nrf_pwm_pins_set(NRF_PWM_Type * p_reg, uint32_t out_pins[NRF_PWM_CHANNEL_COUNT]); /** * @brief Function for configuring the PWM peripheral. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] base_clock Base clock frequency. * @param[in] mode Operating mode of the pulse generator counter. * @param[in] top_value Value up to which the pulse generator counter counts. */ __STATIC_INLINE void nrf_pwm_configure(NRF_PWM_Type * p_reg, nrf_pwm_clk_t base_clock, nrf_pwm_mode_t mode, uint16_t top_value); /** * @brief Function for defining a sequence of PWM duty cycles. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] seq_id Identifier of the sequence (0 or 1). * @param[in] p_seq Pointer to the sequence definition. */ __STATIC_INLINE void nrf_pwm_sequence_set(NRF_PWM_Type * p_reg, uint8_t seq_id, nrf_pwm_sequence_t const * p_seq); /** * @brief Function for modifying the pointer to the duty cycle values * in the specified sequence. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] seq_id Identifier of the sequence (0 or 1). * @param[in] p_values Pointer to an array with duty cycle values. */ __STATIC_INLINE void nrf_pwm_seq_ptr_set(NRF_PWM_Type * p_reg, uint8_t seq_id, uint16_t const * p_values); /** * @brief Function for modifying the total number of duty cycle values * in the specified sequence. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] seq_id Identifier of the sequence (0 or 1). * @param[in] length Number of duty cycle values. */ __STATIC_INLINE void nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_reg, uint8_t seq_id, uint16_t length); /** * @brief Function for modifying the additional number of PWM periods spent * on each duty cycle value in the specified sequence. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] seq_id Identifier of the sequence (0 or 1). * @param[in] refresh Number of additional PWM periods for each duty cycle value. */ __STATIC_INLINE void nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_reg, uint8_t seq_id, uint32_t refresh); /** * @brief Function for modifying the additional time added after the sequence * is played. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] seq_id Identifier of the sequence (0 or 1). * @param[in] end_delay Number of PWM periods added at the end of the sequence. */ __STATIC_INLINE void nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_reg, uint8_t seq_id, uint32_t end_delay); /** * @brief Function for setting the mode of loading sequence data from RAM * and advancing the sequence. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] dec_load Mode of loading sequence data from RAM. * @param[in] dec_step Mode of advancing the active sequence. */ __STATIC_INLINE void nrf_pwm_decoder_set(NRF_PWM_Type * p_reg, nrf_pwm_dec_load_t dec_load, nrf_pwm_dec_step_t dec_step); /** * @brief Function for setting the number of times the sequence playback * should be performed. * * This function applies to two-sequence playback (concatenated sequence 0 and 1). * A single sequence can be played back only once. * * @param[in] p_reg Pointer to the peripheral registers structure. * @param[in] loop_count Number of times to perform the sequence playback. */ __STATIC_INLINE void nrf_pwm_loop_set(NRF_PWM_Type * p_reg, uint16_t loop_count); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_pwm_task_trigger(NRF_PWM_Type * p_reg, nrf_pwm_task_t task) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE uint32_t nrf_pwm_task_address_get(NRF_PWM_Type const * p_reg, nrf_pwm_task_t task) { return ((uint32_t)p_reg + (uint32_t)task); } __STATIC_INLINE void nrf_pwm_event_clear(NRF_PWM_Type * p_reg, nrf_pwm_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)); (void)dummy; #endif } __STATIC_INLINE bool nrf_pwm_event_check(NRF_PWM_Type const * p_reg, nrf_pwm_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE uint32_t nrf_pwm_event_address_get(NRF_PWM_Type const * p_reg, nrf_pwm_event_t event) { return ((uint32_t)p_reg + (uint32_t)event); } __STATIC_INLINE void nrf_pwm_shorts_enable(NRF_PWM_Type * p_reg, uint32_t pwm_shorts_mask) { p_reg->SHORTS |= pwm_shorts_mask; } __STATIC_INLINE void nrf_pwm_shorts_disable(NRF_PWM_Type * p_reg, uint32_t pwm_shorts_mask) { p_reg->SHORTS &= ~(pwm_shorts_mask); } __STATIC_INLINE void nrf_pwm_shorts_set(NRF_PWM_Type * p_reg, uint32_t pwm_shorts_mask) { p_reg->SHORTS = pwm_shorts_mask; } __STATIC_INLINE void nrf_pwm_int_enable(NRF_PWM_Type * p_reg, uint32_t pwm_int_mask) { p_reg->INTENSET = pwm_int_mask; } __STATIC_INLINE void nrf_pwm_int_disable(NRF_PWM_Type * p_reg, uint32_t pwm_int_mask) { p_reg->INTENCLR = pwm_int_mask; } __STATIC_INLINE void nrf_pwm_int_set(NRF_PWM_Type * p_reg, uint32_t pwm_int_mask) { p_reg->INTEN = pwm_int_mask; } __STATIC_INLINE bool nrf_pwm_int_enable_check(NRF_PWM_Type const * p_reg, nrf_pwm_int_mask_t pwm_int) { return (bool)(p_reg->INTENSET & pwm_int); } __STATIC_INLINE void nrf_pwm_enable(NRF_PWM_Type * p_reg) { p_reg->ENABLE = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_pwm_disable(NRF_PWM_Type * p_reg) { p_reg->ENABLE = (PWM_ENABLE_ENABLE_Disabled << PWM_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_pwm_pins_set(NRF_PWM_Type * p_reg, uint32_t out_pins[NRF_PWM_CHANNEL_COUNT]) { uint8_t i; for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i) { p_reg->PSEL.OUT[i] = out_pins[i]; } } __STATIC_INLINE void nrf_pwm_configure(NRF_PWM_Type * p_reg, nrf_pwm_clk_t base_clock, nrf_pwm_mode_t mode, uint16_t top_value) { NRFX_ASSERT(top_value <= PWM_COUNTERTOP_COUNTERTOP_Msk); p_reg->PRESCALER = base_clock; p_reg->MODE = mode; p_reg->COUNTERTOP = top_value; } __STATIC_INLINE void nrf_pwm_sequence_set(NRF_PWM_Type * p_reg, uint8_t seq_id, nrf_pwm_sequence_t const * p_seq) { NRFX_ASSERT(p_seq != NULL); nrf_pwm_seq_ptr_set( p_reg, seq_id, p_seq->values.p_raw); nrf_pwm_seq_cnt_set( p_reg, seq_id, p_seq->length); nrf_pwm_seq_refresh_set( p_reg, seq_id, p_seq->repeats); nrf_pwm_seq_end_delay_set(p_reg, seq_id, p_seq->end_delay); } __STATIC_INLINE void nrf_pwm_seq_ptr_set(NRF_PWM_Type * p_reg, uint8_t seq_id, uint16_t const * p_values) { NRFX_ASSERT(seq_id <= 1); NRFX_ASSERT(p_values != NULL); p_reg->SEQ[seq_id].PTR = (uint32_t)p_values; } __STATIC_INLINE void nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_reg, uint8_t seq_id, uint16_t length) { NRFX_ASSERT(seq_id <= 1); NRFX_ASSERT(length != 0); NRFX_ASSERT(length <= PWM_SEQ_CNT_CNT_Msk); p_reg->SEQ[seq_id].CNT = length; } __STATIC_INLINE void nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_reg, uint8_t seq_id, uint32_t refresh) { NRFX_ASSERT(seq_id <= 1); NRFX_ASSERT(refresh <= PWM_SEQ_REFRESH_CNT_Msk); p_reg->SEQ[seq_id].REFRESH = refresh; } __STATIC_INLINE void nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_reg, uint8_t seq_id, uint32_t end_delay) { NRFX_ASSERT(seq_id <= 1); NRFX_ASSERT(end_delay <= PWM_SEQ_ENDDELAY_CNT_Msk); p_reg->SEQ[seq_id].ENDDELAY = end_delay; } __STATIC_INLINE void nrf_pwm_decoder_set(NRF_PWM_Type * p_reg, nrf_pwm_dec_load_t dec_load, nrf_pwm_dec_step_t dec_step) { p_reg->DECODER = ((uint32_t)dec_load << PWM_DECODER_LOAD_Pos) | ((uint32_t)dec_step << PWM_DECODER_MODE_Pos); } __STATIC_INLINE void nrf_pwm_loop_set(NRF_PWM_Type * p_reg, uint16_t loop_count) { p_reg->LOOP = loop_count; } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif // NRF_PWM_H__