/* * This file is part of the OpenMV project. * Copyright (c) 2013/2014 Ibrahim Abdelkader * This work is licensed under the MIT license, see the file LICENSE for details. * * OV3660 driver. * */ #include #include #include #include "sccb.h" #include "xclk.h" #include "ov3660.h" #include "ov3660_regs.h" #include "ov3660_settings.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG) #include "esp32-hal-log.h" #else #include "esp_log.h" static const char *TAG = "ov3660"; #endif //#define REG_DEBUG_ON static int read_reg(uint8_t slv_addr, const uint16_t reg){ int ret = SCCB_Read16(slv_addr, reg); #ifdef REG_DEBUG_ON if (ret < 0) { ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret); } #endif return ret; } static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask){ return (read_reg(slv_addr, reg) & mask) == mask; } static int read_reg16(uint8_t slv_addr, const uint16_t reg){ int ret = 0, ret2 = 0; ret = read_reg(slv_addr, reg); if (ret >= 0) { ret = (ret & 0xFF) << 8; ret2 = read_reg(slv_addr, reg+1); if (ret2 < 0) { ret = ret2; } else { ret |= ret2 & 0xFF; } } return ret; } static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value){ int ret = 0; #ifndef REG_DEBUG_ON ret = SCCB_Write16(slv_addr, reg, value); #else int old_value = read_reg(slv_addr, reg); if (old_value < 0) { return old_value; } if ((uint8_t)old_value != value) { ESP_LOGI(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value); ret = SCCB_Write16(slv_addr, reg, value); } else { ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value); ret = SCCB_Write16(slv_addr, reg, value);//maybe not? } if (ret < 0) { ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret); } #endif return ret; } static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value) { int ret = 0; uint8_t c_value, new_value; ret = read_reg(slv_addr, reg); if(ret < 0) { return ret; } c_value = ret; new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset); ret = write_reg(slv_addr, reg, new_value); return ret; } static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2]) { int i = 0, ret = 0; while (!ret && regs[i][0] != REGLIST_TAIL) { if (regs[i][0] == REG_DLY) { vTaskDelay(regs[i][1] / portTICK_PERIOD_MS); } else { ret = write_reg(slv_addr, regs[i][0], regs[i][1]); } i++; } return ret; } static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value) { if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) { return -1; } return 0; } static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value) { if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) { return -1; } return 0; } #define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, enable?mask:0) static int calc_sysclk(int xclk, bool pll_bypass, int pll_multiplier, int pll_sys_div, int pll_pre_div, bool pll_root_2x, int pll_seld5, bool pclk_manual, int pclk_div) { const int pll_pre_div2x_map[] = { 2, 3, 4, 6 };//values are multiplied by two to avoid floats const int pll_seld52x_map[] = { 2, 2, 4, 5 }; if(!pll_sys_div) { pll_sys_div = 1; } int pll_pre_div2x = pll_pre_div2x_map[pll_pre_div]; int pll_root_div = pll_root_2x?2:1; int pll_seld52x = pll_seld52x_map[pll_seld5]; int VCO = (xclk / 1000) * pll_multiplier * pll_root_div * 2 / pll_pre_div2x; int PLLCLK = pll_bypass?(xclk):(VCO * 1000 * 2 / pll_sys_div / pll_seld52x); int PCLK = PLLCLK / 2 / ((pclk_manual && pclk_div)?pclk_div:1); int SYSCLK = PLLCLK / 4; ESP_LOGI(TAG, "Calculated VCO: %d Hz, PLLCLK: %d Hz, SYSCLK: %d Hz, PCLK: %d Hz", VCO*1000, PLLCLK, SYSCLK, PCLK); return SYSCLK; } static int set_pll(sensor_t *sensor, bool bypass, uint8_t multiplier, uint8_t sys_div, uint8_t pre_div, bool root_2x, uint8_t seld5, bool pclk_manual, uint8_t pclk_div){ int ret = 0; if(multiplier > 31 || sys_div > 15 || pre_div > 3 || pclk_div > 31 || seld5 > 3){ ESP_LOGE(TAG, "Invalid arguments"); return -1; } calc_sysclk(sensor->xclk_freq_hz, bypass, multiplier, sys_div, pre_div, root_2x, seld5, pclk_manual, pclk_div); ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL0, bypass?0x80:0x00); if (ret == 0) { ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL1, multiplier & 0x1f); } if (ret == 0) { ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL2, 0x10 | (sys_div & 0x0f)); } if (ret == 0) { ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL3, (pre_div & 0x3) << 4 | seld5 | (root_2x?0x40:0x00)); } if (ret == 0) { ret = write_reg(sensor->slv_addr, PCLK_RATIO, pclk_div & 0x1f); } if (ret == 0) { ret = write_reg(sensor->slv_addr, VFIFO_CTRL0C, pclk_manual?0x22:0x20); } if(ret){ ESP_LOGE(TAG, "set_sensor_pll FAILED!"); } return ret; } static int set_ae_level(sensor_t *sensor, int level); static int reset(sensor_t *sensor) { int ret = 0; // Software Reset: clear all registers and reset them to their default values ret = write_reg(sensor->slv_addr, SYSTEM_CTROL0, 0x82); if(ret){ ESP_LOGE(TAG, "Software Reset FAILED!"); return ret; } vTaskDelay(100 / portTICK_PERIOD_MS); ret = write_regs(sensor->slv_addr, sensor_default_regs); if (ret == 0) { ESP_LOGD(TAG, "Camera defaults loaded"); ret = set_ae_level(sensor, 0); vTaskDelay(100 / portTICK_PERIOD_MS); } return ret; } static int set_pixformat(sensor_t *sensor, pixformat_t pixformat) { int ret = 0; const uint16_t (*regs)[2]; switch (pixformat) { case PIXFORMAT_YUV422: regs = sensor_fmt_yuv422; break; case PIXFORMAT_GRAYSCALE: regs = sensor_fmt_grayscale; break; case PIXFORMAT_RGB565: case PIXFORMAT_RGB888: regs = sensor_fmt_rgb565; break; case PIXFORMAT_JPEG: regs = sensor_fmt_jpeg; break; case PIXFORMAT_RAW: regs = sensor_fmt_raw; break; default: ESP_LOGE(TAG, "Unsupported pixformat: %u", pixformat); return -1; } ret = write_regs(sensor->slv_addr, regs); if(ret == 0) { sensor->pixformat = pixformat; ESP_LOGD(TAG, "Set pixformat to: %u", pixformat); } return ret; } static int set_image_options(sensor_t *sensor) { int ret = 0; uint8_t reg20 = 0; uint8_t reg21 = 0; uint8_t reg4514 = 0; uint8_t reg4514_test = 0; // compression if (sensor->pixformat == PIXFORMAT_JPEG) { reg21 |= 0x20; } // binning if (sensor->status.binning) { reg20 |= 0x01; reg21 |= 0x01; reg4514_test |= 4; } else { reg20 |= 0x40; } // V-Flip if (sensor->status.vflip) { reg20 |= 0x06; reg4514_test |= 1; } // H-Mirror if (sensor->status.hmirror) { reg21 |= 0x06; reg4514_test |= 2; } switch (reg4514_test) { //no binning case 0: reg4514 = 0x88; break;//normal case 1: reg4514 = 0x88; break;//v-flip case 2: reg4514 = 0xbb; break;//h-mirror case 3: reg4514 = 0xbb; break;//v-flip+h-mirror //binning case 4: reg4514 = 0xaa; break;//normal case 5: reg4514 = 0xbb; break;//v-flip case 6: reg4514 = 0xbb; break;//h-mirror case 7: reg4514 = 0xaa; break;//v-flip+h-mirror } if(write_reg(sensor->slv_addr, TIMING_TC_REG20, reg20) || write_reg(sensor->slv_addr, TIMING_TC_REG21, reg21) || write_reg(sensor->slv_addr, 0x4514, reg4514)){ ESP_LOGE(TAG, "Setting Image Options Failed"); ret = -1; } if (sensor->status.binning) { ret = write_reg(sensor->slv_addr, 0x4520, 0x0b) || write_reg(sensor->slv_addr, X_INCREMENT, 0x31)//odd:3, even: 1 || write_reg(sensor->slv_addr, Y_INCREMENT, 0x31);//odd:3, even: 1 } else { ret = write_reg(sensor->slv_addr, 0x4520, 0xb0) || write_reg(sensor->slv_addr, X_INCREMENT, 0x11)//odd:1, even: 1 || write_reg(sensor->slv_addr, Y_INCREMENT, 0x11);//odd:1, even: 1 } ESP_LOGD(TAG, "Set Image Options: Compression: %u, Binning: %u, V-Flip: %u, H-Mirror: %u, Reg-4514: 0x%02x", sensor->pixformat == PIXFORMAT_JPEG, sensor->status.binning, sensor->status.vflip, sensor->status.hmirror, reg4514); return ret; } static int set_framesize(sensor_t *sensor, framesize_t framesize) { int ret = 0; if(framesize > FRAMESIZE_QXGA){ ESP_LOGW(TAG, "Invalid framesize: %u", framesize); framesize = FRAMESIZE_QXGA; } framesize_t old_framesize = sensor->status.framesize; sensor->status.framesize = framesize; uint16_t w = resolution[framesize].width; uint16_t h = resolution[framesize].height; aspect_ratio_t ratio = resolution[sensor->status.framesize].aspect_ratio; ratio_settings_t settings = ratio_table[ratio]; sensor->status.binning = (w <= (settings.max_width / 2) && h <= (settings.max_height / 2)); sensor->status.scale = !((w == settings.max_width && h == settings.max_height) || (w == (settings.max_width / 2) && h == (settings.max_height / 2))); ret = write_addr_reg(sensor->slv_addr, X_ADDR_ST_H, settings.start_x, settings.start_y) || write_addr_reg(sensor->slv_addr, X_ADDR_END_H, settings.end_x, settings.end_y) || write_addr_reg(sensor->slv_addr, X_OUTPUT_SIZE_H, w, h); if (ret) { goto fail; } if (sensor->status.binning) { ret = write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, settings.total_x, (settings.total_y / 2) + 1) || write_addr_reg(sensor->slv_addr, X_OFFSET_H, 8, 2); } else { ret = write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, settings.total_x, settings.total_y) || write_addr_reg(sensor->slv_addr, X_OFFSET_H, 16, 6); } if (ret == 0) { ret = write_reg_bits(sensor->slv_addr, ISP_CONTROL_01, 0x20, sensor->status.scale); } if (ret == 0) { ret = set_image_options(sensor); } if (ret) { goto fail; } if (sensor->pixformat == PIXFORMAT_JPEG) { if (framesize == FRAMESIZE_QXGA || sensor->xclk_freq_hz == 16000000) { //40MHz SYSCLK and 10MHz PCLK ret = set_pll(sensor, false, 24, 1, 3, false, 0, true, 8); } else { //50MHz SYSCLK and 10MHz PCLK ret = set_pll(sensor, false, 30, 1, 3, false, 0, true, 10); } } else { //tuned for 16MHz XCLK and 8MHz PCLK if (framesize > FRAMESIZE_HVGA) { //8MHz SYSCLK and 8MHz PCLK (4.44 FPS) ret = set_pll(sensor, false, 4, 1, 0, false, 2, true, 2); } else if (framesize >= FRAMESIZE_QVGA) { //16MHz SYSCLK and 8MHz PCLK (10.25 FPS) ret = set_pll(sensor, false, 8, 1, 0, false, 2, true, 4); } else { //32MHz SYSCLK and 8MHz PCLK (17.77 FPS) ret = set_pll(sensor, false, 8, 1, 0, false, 0, true, 8); } } if (ret == 0) { ESP_LOGD(TAG, "Set framesize to: %ux%u", w, h); } return ret; fail: sensor->status.framesize = old_framesize; ESP_LOGE(TAG, "Setting framesize to: %ux%u failed", w, h); return ret; } static int set_hmirror(sensor_t *sensor, int enable) { int ret = 0; sensor->status.hmirror = enable; ret = set_image_options(sensor); if (ret == 0) { ESP_LOGD(TAG, "Set h-mirror to: %d", enable); } return ret; } static int set_vflip(sensor_t *sensor, int enable) { int ret = 0; sensor->status.vflip = enable; ret = set_image_options(sensor); if (ret == 0) { ESP_LOGD(TAG, "Set v-flip to: %d", enable); } return ret; } static int set_quality(sensor_t *sensor, int qs) { int ret = 0; ret = write_reg(sensor->slv_addr, COMPRESSION_CTRL07, qs & 0x3f); if (ret == 0) { sensor->status.quality = qs; ESP_LOGD(TAG, "Set quality to: %d", qs); } return ret; } static int set_colorbar(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR, enable); if (ret == 0) { sensor->status.colorbar = enable; ESP_LOGD(TAG, "Set colorbar to: %d", enable); } return ret; } static int set_gain_ctrl(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN, !enable); if (ret == 0) { ESP_LOGD(TAG, "Set gain_ctrl to: %d", enable); sensor->status.agc = enable; } return ret; } static int set_exposure_ctrl(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN, !enable); if (ret == 0) { ESP_LOGD(TAG, "Set exposure_ctrl to: %d", enable); sensor->status.aec = enable; } return ret; } static int set_whitebal(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, ISP_CONTROL_01, 0x01, enable); if (ret == 0) { ESP_LOGD(TAG, "Set awb to: %d", enable); sensor->status.awb = enable; } return ret; } //Advanced AWB static int set_dcw_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, 0x5183, 0x80, !enable); if (ret == 0) { ESP_LOGD(TAG, "Set dcw to: %d", enable); sensor->status.dcw = enable; } return ret; } //night mode enable static int set_aec2(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, 0x3a00, 0x04, enable); if (ret == 0) { ESP_LOGD(TAG, "Set aec2 to: %d", enable); sensor->status.aec2 = enable; } return ret; } static int set_bpc_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x04, enable); if (ret == 0) { ESP_LOGD(TAG, "Set bpc to: %d", enable); sensor->status.bpc = enable; } return ret; } static int set_wpc_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x02, enable); if (ret == 0) { ESP_LOGD(TAG, "Set wpc to: %d", enable); sensor->status.wpc = enable; } return ret; } //Gamma enable static int set_raw_gma_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x20, enable); if (ret == 0) { ESP_LOGD(TAG, "Set raw_gma to: %d", enable); sensor->status.raw_gma = enable; } return ret; } static int set_lenc_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x80, enable); if (ret == 0) { ESP_LOGD(TAG, "Set lenc to: %d", enable); sensor->status.lenc = enable; } return ret; } static int get_agc_gain(sensor_t *sensor) { int ra = read_reg(sensor->slv_addr, 0x350a); if (ra < 0) { return 0; } int rb = read_reg(sensor->slv_addr, 0x350b); if (rb < 0) { return 0; } int res = (rb & 0xF0) >> 4 | (ra & 0x03) << 4; if (rb & 0x0F) { res += 1; } return res; } //real gain static int set_agc_gain(sensor_t *sensor, int gain) { int ret = 0; if(gain < 0) { gain = 0; } else if(gain > 64) { gain = 64; } //gain value is 6.4 bits float //in order to use the max range, we deduct 1/16 int gainv = gain << 4; if(gainv){ gainv -= 1; } ret = write_reg(sensor->slv_addr, 0x350a, gainv >> 8) || write_reg(sensor->slv_addr, 0x350b, gainv & 0xff); if (ret == 0) { ESP_LOGD(TAG, "Set agc_gain to: %d", gain); sensor->status.agc_gain = gain; } return ret; } static int get_aec_value(sensor_t *sensor) { int ra = read_reg(sensor->slv_addr, 0x3500); if (ra < 0) { return 0; } int rb = read_reg(sensor->slv_addr, 0x3501); if (rb < 0) { return 0; } int rc = read_reg(sensor->slv_addr, 0x3502); if (rc < 0) { return 0; } int res = (ra & 0x0F) << 12 | (rb & 0xFF) << 4 | (rc & 0xF0) >> 4; return res; } static int set_aec_value(sensor_t *sensor, int value) { int ret = 0, max_val = 0; max_val = read_reg16(sensor->slv_addr, 0x380e); if (max_val < 0) { ESP_LOGE(TAG, "Could not read max aec_value"); return -1; } if (value > max_val) { value =max_val; } ret = write_reg(sensor->slv_addr, 0x3500, (value >> 12) & 0x0F) || write_reg(sensor->slv_addr, 0x3501, (value >> 4) & 0xFF) || write_reg(sensor->slv_addr, 0x3502, (value << 4) & 0xF0); if (ret == 0) { ESP_LOGD(TAG, "Set aec_value to: %d / %d", value, max_val); sensor->status.aec_value = value; } return ret; } static int set_ae_level(sensor_t *sensor, int level) { int ret = 0; if (level < -5 || level > 5) { return -1; } //good targets are between 5 and 115 int target_level = ((level + 5) * 10) + 5; int level_high, level_low; int fast_high, fast_low; level_low = target_level * 23 / 25; //0.92 (0.46) level_high = target_level * 27 / 25; //1.08 (2.08) fast_low = level_low >> 1; fast_high = level_high << 1; if(fast_high>255) { fast_high = 255; } ret = write_reg(sensor->slv_addr, 0x3a0f, level_high) || write_reg(sensor->slv_addr, 0x3a10, level_low) || write_reg(sensor->slv_addr, 0x3a1b, level_high) || write_reg(sensor->slv_addr, 0x3a1e, level_low) || write_reg(sensor->slv_addr, 0x3a11, fast_high) || write_reg(sensor->slv_addr, 0x3a1f, fast_low); if (ret == 0) { ESP_LOGD(TAG, "Set ae_level to: %d", level); sensor->status.ae_level = level; } return ret; } static int set_wb_mode(sensor_t *sensor, int mode) { int ret = 0; if (mode < 0 || mode > 4) { return -1; } ret = write_reg(sensor->slv_addr, 0x3406, (mode != 0)); if (ret) { return ret; } switch (mode) { case 1://Sunny ret = write_reg16(sensor->slv_addr, 0x3400, 0x5e0) //AWB R GAIN || write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN || write_reg16(sensor->slv_addr, 0x3404, 0x540);//AWB B GAIN break; case 2://Cloudy ret = write_reg16(sensor->slv_addr, 0x3400, 0x650) //AWB R GAIN || write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN || write_reg16(sensor->slv_addr, 0x3404, 0x4f0);//AWB B GAIN break; case 3://Office ret = write_reg16(sensor->slv_addr, 0x3400, 0x520) //AWB R GAIN || write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN || write_reg16(sensor->slv_addr, 0x3404, 0x660);//AWB B GAIN break; case 4://HOME ret = write_reg16(sensor->slv_addr, 0x3400, 0x420) //AWB R GAIN || write_reg16(sensor->slv_addr, 0x3402, 0x3f0) //AWB G GAIN || write_reg16(sensor->slv_addr, 0x3404, 0x710);//AWB B GAIN break; default://AUTO break; } if (ret == 0) { ESP_LOGD(TAG, "Set wb_mode to: %d", mode); sensor->status.wb_mode = mode; } return ret; } static int set_awb_gain_dsp(sensor_t *sensor, int enable) { int ret = 0; int old_mode = sensor->status.wb_mode; int mode = enable?old_mode:0; ret = set_wb_mode(sensor, mode); if (ret == 0) { sensor->status.wb_mode = old_mode; ESP_LOGD(TAG, "Set awb_gain to: %d", enable); sensor->status.awb_gain = enable; } return ret; } static int set_special_effect(sensor_t *sensor, int effect) { int ret=0; if (effect < 0 || effect > 6) { return -1; } uint8_t * regs = (uint8_t *)sensor_special_effects[effect]; ret = write_reg(sensor->slv_addr, 0x5580, regs[0]) || write_reg(sensor->slv_addr, 0x5583, regs[1]) || write_reg(sensor->slv_addr, 0x5584, regs[2]) || write_reg(sensor->slv_addr, 0x5003, regs[3]); if (ret == 0) { ESP_LOGD(TAG, "Set special_effect to: %d", effect); sensor->status.special_effect = effect; } return ret; } static int set_brightness(sensor_t *sensor, int level) { int ret = 0; uint8_t value = 0; bool negative = false; switch (level) { case 3: value = 0x30; break; case 2: value = 0x20; break; case 1: value = 0x10; break; case -1: value = 0x10; negative = true; break; case -2: value = 0x20; negative = true; break; case -3: value = 0x30; negative = true; break; default: // 0 break; } ret = write_reg(sensor->slv_addr, 0x5587, value); if (ret == 0) { ret = write_reg_bits(sensor->slv_addr, 0x5588, 0x08, negative); } if (ret == 0) { ESP_LOGD(TAG, "Set brightness to: %d", level); sensor->status.brightness = level; } return ret; } static int set_contrast(sensor_t *sensor, int level) { int ret = 0; if(level > 3 || level < -3) { return -1; } ret = write_reg(sensor->slv_addr, 0x5586, (level + 4) << 3); if (ret == 0) { ESP_LOGD(TAG, "Set contrast to: %d", level); sensor->status.contrast = level; } return ret; } static int set_saturation(sensor_t *sensor, int level) { int ret = 0; if(level > 4 || level < -4) { return -1; } uint8_t * regs = (uint8_t *)sensor_saturation_levels[level+4]; for(int i=0; i<11; i++) { ret = write_reg(sensor->slv_addr, 0x5381 + i, regs[i]); if (ret) { break; } } if (ret == 0) { ESP_LOGD(TAG, "Set saturation to: %d", level); sensor->status.saturation = level; } return ret; } static int set_sharpness(sensor_t *sensor, int level) { int ret = 0; if(level > 3 || level < -3) { return -1; } uint8_t mt_offset_2 = (level + 3) * 8; uint8_t mt_offset_1 = mt_offset_2 + 1; ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x40, false)//0x40 means auto || write_reg(sensor->slv_addr, 0x5300, 0x10) || write_reg(sensor->slv_addr, 0x5301, 0x10) || write_reg(sensor->slv_addr, 0x5302, mt_offset_1) || write_reg(sensor->slv_addr, 0x5303, mt_offset_2) || write_reg(sensor->slv_addr, 0x5309, 0x10) || write_reg(sensor->slv_addr, 0x530a, 0x10) || write_reg(sensor->slv_addr, 0x530b, 0x04) || write_reg(sensor->slv_addr, 0x530c, 0x06); if (ret == 0) { ESP_LOGD(TAG, "Set sharpness to: %d", level); sensor->status.sharpness = level; } return ret; } static int set_gainceiling(sensor_t *sensor, gainceiling_t level) { int ret = 0, l = (int)level; ret = write_reg(sensor->slv_addr, 0x3A18, (l >> 8) & 3) || write_reg(sensor->slv_addr, 0x3A19, l & 0xFF); if (ret == 0) { ESP_LOGD(TAG, "Set gainceiling to: %d", l); sensor->status.gainceiling = l; } return ret; } static int get_denoise(sensor_t *sensor) { if (!check_reg_mask(sensor->slv_addr, 0x5308, 0x10)) { return 0; } return (read_reg(sensor->slv_addr, 0x5306) / 4) + 1; } static int set_denoise(sensor_t *sensor, int level) { int ret = 0; if (level < 0 || level > 8) { return -1; } ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x10, level > 0); if (ret == 0 && level > 0) { ret = write_reg(sensor->slv_addr, 0x5306, (level - 1) * 4); } if (ret == 0) { ESP_LOGD(TAG, "Set denoise to: %d", level); sensor->status.denoise = level; } return ret; } static int get_reg(sensor_t *sensor, int reg, int mask) { int ret = 0, ret2 = 0; if(mask > 0xFF){ ret = read_reg16(sensor->slv_addr, reg); if(ret >= 0 && mask > 0xFFFF){ ret2 = read_reg(sensor->slv_addr, reg+2); if(ret2 >= 0){ ret = (ret << 8) | ret2 ; } else { ret = ret2; } } } else { ret = read_reg(sensor->slv_addr, reg); } if(ret > 0){ ret &= mask; } return ret; } static int set_reg(sensor_t *sensor, int reg, int mask, int value) { int ret = 0, ret2 = 0; if(mask > 0xFF){ ret = read_reg16(sensor->slv_addr, reg); if(ret >= 0 && mask > 0xFFFF){ ret2 = read_reg(sensor->slv_addr, reg+2); if(ret2 >= 0){ ret = (ret << 8) | ret2 ; } else { ret = ret2; } } } else { ret = read_reg(sensor->slv_addr, reg); } if(ret < 0){ return ret; } value = (ret & ~mask) | (value & mask); if(mask > 0xFFFF){ ret = write_reg16(sensor->slv_addr, reg, value >> 8); if(ret >= 0){ ret = write_reg(sensor->slv_addr, reg+2, value & 0xFF); } } else if(mask > 0xFF){ ret = write_reg16(sensor->slv_addr, reg, value); } else { ret = write_reg(sensor->slv_addr, reg, value); } return ret; } static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning) { int ret = 0; ret = write_addr_reg(sensor->slv_addr, X_ADDR_ST_H, startX, startY) || write_addr_reg(sensor->slv_addr, X_ADDR_END_H, endX, endY) || write_addr_reg(sensor->slv_addr, X_OFFSET_H, offsetX, offsetY) || write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, totalX, totalY) || write_addr_reg(sensor->slv_addr, X_OUTPUT_SIZE_H, outputX, outputY) || write_reg_bits(sensor->slv_addr, ISP_CONTROL_01, 0x20, scale); if(!ret){ sensor->status.scale = scale; sensor->status.binning = binning; ret = set_image_options(sensor); } return ret; } static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div) { return set_pll(sensor, bypass > 0, multiplier, sys_div, pre_div, root_2x > 0, seld5, pclk_manual > 0, pclk_div); } static int set_xclk(sensor_t *sensor, int timer, int xclk) { int ret = 0; sensor->xclk_freq_hz = xclk * 1000000U; ret = xclk_timer_conf(timer, sensor->xclk_freq_hz); return ret; } static int init_status(sensor_t *sensor) { sensor->status.brightness = 0; sensor->status.contrast = 0; sensor->status.saturation = 0; sensor->status.sharpness = (read_reg(sensor->slv_addr, 0x5303) / 8) - 3; sensor->status.denoise = get_denoise(sensor); sensor->status.ae_level = 0; sensor->status.gainceiling = read_reg16(sensor->slv_addr, 0x3A18) & 0x3FF; sensor->status.awb = check_reg_mask(sensor->slv_addr, ISP_CONTROL_01, 0x01); sensor->status.dcw = !check_reg_mask(sensor->slv_addr, 0x5183, 0x80); sensor->status.agc = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN); sensor->status.aec = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN); sensor->status.hmirror = check_reg_mask(sensor->slv_addr, TIMING_TC_REG21, TIMING_TC_REG21_HMIRROR); sensor->status.vflip = check_reg_mask(sensor->slv_addr, TIMING_TC_REG20, TIMING_TC_REG20_VFLIP); sensor->status.colorbar = check_reg_mask(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR); sensor->status.bpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x04); sensor->status.wpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x02); sensor->status.raw_gma = check_reg_mask(sensor->slv_addr, 0x5000, 0x20); sensor->status.lenc = check_reg_mask(sensor->slv_addr, 0x5000, 0x80); sensor->status.quality = read_reg(sensor->slv_addr, COMPRESSION_CTRL07) & 0x3f; sensor->status.special_effect = 0; sensor->status.wb_mode = 0; sensor->status.awb_gain = check_reg_mask(sensor->slv_addr, 0x3406, 0x01); sensor->status.agc_gain = get_agc_gain(sensor); sensor->status.aec_value = get_aec_value(sensor); sensor->status.aec2 = check_reg_mask(sensor->slv_addr, 0x3a00, 0x04); return 0; } int ov3660_detect(int slv_addr, sensor_id_t *id) { if (OV3660_SCCB_ADDR == slv_addr) { uint8_t h = SCCB_Read16(slv_addr, 0x300A); uint8_t l = SCCB_Read16(slv_addr, 0x300B); uint16_t PID = (h<<8) | l; if (OV3660_PID == PID) { id->PID = PID; return PID; } else { ESP_LOGI(TAG, "Mismatch PID=0x%x", PID); } } return 0; } int ov3660_init(sensor_t *sensor) { sensor->reset = reset; sensor->set_pixformat = set_pixformat; sensor->set_framesize = set_framesize; sensor->set_contrast = set_contrast; sensor->set_brightness = set_brightness; sensor->set_saturation = set_saturation; sensor->set_sharpness = set_sharpness; sensor->set_gainceiling = set_gainceiling; sensor->set_quality = set_quality; sensor->set_colorbar = set_colorbar; sensor->set_gain_ctrl = set_gain_ctrl; sensor->set_exposure_ctrl = set_exposure_ctrl; sensor->set_whitebal = set_whitebal; sensor->set_hmirror = set_hmirror; sensor->set_vflip = set_vflip; sensor->init_status = init_status; sensor->set_aec2 = set_aec2; sensor->set_aec_value = set_aec_value; sensor->set_special_effect = set_special_effect; sensor->set_wb_mode = set_wb_mode; sensor->set_ae_level = set_ae_level; sensor->set_dcw = set_dcw_dsp; sensor->set_bpc = set_bpc_dsp; sensor->set_wpc = set_wpc_dsp; sensor->set_awb_gain = set_awb_gain_dsp; sensor->set_agc_gain = set_agc_gain; sensor->set_raw_gma = set_raw_gma_dsp; sensor->set_lenc = set_lenc_dsp; sensor->set_denoise = set_denoise; sensor->get_reg = get_reg; sensor->set_reg = set_reg; sensor->set_res_raw = set_res_raw; sensor->set_pll = _set_pll; sensor->set_xclk = set_xclk; return 0; }